Adequate oxygen supply is crucial for proper cellular function. The emergence of high-throughput (HT) expansion of human stem-cell-derived cells and HT cellular assays for drug testing necessitate monitoring and understanding of the oxygenation conditions, yet virtually no data exists for such settings. For metabolically active cells like cardiomyocytes, variations in oxygenation may significantly impact their maturation and function; conversely, electromechanical activity can drive oxygen demands. We used HT label-free optical measurements and computational modeling to gain insights about oxygen availability (peri-cellular oxygen dynamics) in syncytia of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) and human cardiac fibroblasts (cFB) grown in glass-bottom 96-well plates under static conditions. Our experimental results highlight the critical role of cell density and solution height (oxygen delivery path) in peri-cellular oxygen dynamics. The developed 3D reaction-diffusion model with Michaelis-Menten kinetics, trained on the obtained comprehensive data set, revealed that time-variant maximum oxygen consumption rate, Vmax, is needed to faithfully capture the complex peri-cellular oxygen dynamics in the excitable hiPSC-CMs, but not in the cFB. For the latter, accounting for cell proliferation was needed. Interestingly, we found both hypoxic (< 2%) and hyperoxic (> 7%) conditions can easily emerge in these standard HT plates in static culture and that peri-cellular oxygen dynamics evolves with days in culture. Our results and the developed computational model can directly be used to optimize cardiac cell growth in HT plates to achieve desired physiological conditions, important in cellular assays for cardiotoxicity, drug development, personalized medicine and heart regeneration applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888188 | PMC |
http://dx.doi.org/10.1101/2025.02.19.639086 | DOI Listing |
Nanomaterials (Basel)
February 2025
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan.
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Deparment of Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge.
View Article and Find Full Text PDFCells
February 2025
Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland.
Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival.
View Article and Find Full Text PDFVet Pathol
March 2025
Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.
Different tissues have a normal color spectrum that reflects their cellular composition and/or metabolic features. Similarly, distinct color variations may occur in tissues that have undergone pathologic or nonpathologic changes. Common examples of color changes in domestic animal tissues include red (associated with erythrocytes, hemoglobin, and myoglobin), brown (ferric hemoglobin or myoglobin, suppurative inflammation, lipid oxidation, postmortem autolysis, formalin fixation, neoplasms arising from cytochrome-rich tissues), yellow (hemoglobin and iron degradation, biliary pigment and by-products, carotenes, keratin, necrosis, suppurative or fibrinous inflammation), green (hemoglobin and iron degradation, biliary pigment and by-products, meconium, eosinophilic or suppurative inflammation, oomycete and algal infections), white (lack of blood, adipose tissue and its neoplasms, chylous effusion, necrosis, mineralization, fibrosis, lymphoid tissue, round cell neoplasms), translucent (transudate, cysts), black to gray (hemoglobin and iron degradation, melanin, carbon, tattoos), and blue to purple (poorly oxygenated blood, tattoos).
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Artificial synapses, basic units of neuromorphic hardware, have been studied to emulate synaptic dynamics, which are beneficial for realizing high-quality neural networks. Currently, two-dimensional (2D) material heterojunction structures are widely used in the study of artificial synapses; however, their dynamic weight-updating characteristics are restricted owing to their high nonlinearity and low symmetricity. In this study, we treated h-BN with oxygen plasma to form a charge-trapping layer (CTL), and we prepared 2D ReS/CTL/h-BN heterojunction synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!