The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885746PMC
http://dx.doi.org/10.1007/s13205-025-04244-2DOI Listing

Publication Analysis

Top Keywords

photosynthetic productivity
8
algal cell
8
nps enter
8
nps
7
plant
5
role nanobionics
4
nanobionics improve
4
improve photosynthetic
4
productivity
4
productivity plants
4

Similar Publications

Mechanical and Light Activation of Materials for Chemical Production.

Adv Mater

March 2025

Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.

View Article and Find Full Text PDF

Toona sinensis, a plant species renowned for its culinary and medicinal properties, exhibits diverse colour variations that contribute to its aesthetic appeal and commercial value. Understanding the molecular mechanisms underlying colour and aroma traits in Toona sinensis is crucial for breeding programs and quality regulation in agriculture and the food industry. The present investigation included a comprehensive analysis of the transcriptomic and metabolomic profiles of Toona sinensis with different colours, including green, red, and red leaves with green stems.

View Article and Find Full Text PDF

In the future, plants may encounter increased light and elevated CO levels. How consequent alterations in photosynthetic rates will impact fluxes in photosynthetic carbon metabolism remains uncertain. Respiration in light (R) is pivotal in plant carbon balance and a key parameter in photosynthesis models.

View Article and Find Full Text PDF

Cold stress-mediated reduced photosynthesis and osmotic stress severely endanger and limit plant development and crop yield. We investigated the expression of the NtPhyA (phytochrome A) gene in wild-type K326 and the defence response of PhyA knockout mutants under cold stress to monitor their physiological changes. PhyA mutants exhibited greater cold tolerance than wild-type (WT) plants, with lower levels of reactive oxygen species and malondialdehyde.

View Article and Find Full Text PDF

Developed BL-EF to acquire plant growth-promoting functions under salt stress by introducing the ACC deaminase gene.

Plant Physiol Biochem

March 2025

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China. Electronic address:

The application of plant growth-promoting rhizobacteria (PGPR) is a novel and effective strategy to ameliorate soil salinity and increase agricultural productivity. ACC deaminase (ACCD) in PGPR plays a key role in alleviating salt stress and promoting plant growth. This study aimed to investigate the potential of ACCD-producing strain BL-EF to mitigate salt stress in tomato plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!