Introduction: Intracortical Brain-computer interfaces (iBCIs) are a promising technology to restore function after stroke. It remains unclear whether iBCIs will be able to use the signals available in the neocortex overlying stroke affecting the underlying white matter and basal ganglia.

Methods: Here, we decoded both local field potentials (LFPs) and spikes recorded from intracortical electrode arrays in a person with chronic cerebral subcortical stroke performing various tasks with his paretic hand, with and without a powered orthosis. Analysis of these neural signals provides an opportunity to explore the electrophysiological activities of a stroke affected brain and inform the design of medical devices that could restore function.

Results: The frequency domain analysis showed that as the distance between an array and the stroke site increased, the low frequency power decreased, and high frequency power increased. Coordinated cross-channel firing of action potentials while attempting a motor task and cross-channel simultaneous low frequency bursts while relaxing were also observed. Using several offline analysis techniques, we propose three features for decoding motor movements in stroke-affected brains.

Discussion: Despite the presence of unique activities that were not reported in previous iBCI studies with intact brain functions, it is possible to decode motor intents from the neural signals collected from a subcortical stroke-affected brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885313PMC
http://dx.doi.org/10.3389/fnhum.2025.1544397DOI Listing

Publication Analysis

Top Keywords

intracortical brain-computer
8
neural signals
8
low frequency
8
frequency power
8
stroke
6
neural signal
4
analysis
4
signal analysis
4
analysis chronic
4
chronic stroke
4

Similar Publications

Introduction: Intracortical Brain-computer interfaces (iBCIs) are a promising technology to restore function after stroke. It remains unclear whether iBCIs will be able to use the signals available in the neocortex overlying stroke affecting the underlying white matter and basal ganglia.

Methods: Here, we decoded both local field potentials (LFPs) and spikes recorded from intracortical electrode arrays in a person with chronic cerebral subcortical stroke performing various tasks with his paretic hand, with and without a powered orthosis.

View Article and Find Full Text PDF

State-of-the-art intracortical neuroprostheses currently enable communication at 60+ words per minute for anarthric individuals by training on over 10K sentences to account for phoneme variability in different word contexts. There is limited understanding about whether this performance can be maintained in decoding naturalistic speech with 40K+ word vocabularies across elicited, spontaneous, and conversational speech contexts. We introduce a vocal-unit-level generalization test to explicitly evaluate neural decoder performance with an expanded and more diverse behavioral repertoire.

View Article and Find Full Text PDF

Intracortical microelectrode arrays (MEAs) are used to record neural activity in vivo at single-cell resolution for both neuroscience studies and for engineering restorative devices such as brain-computer interfaces (BCIs). The recording performance of these devices are known to degrade over weeks to months after implantation due, in part, to neuroinflammation and oxidative stress. Characterizing and mitigating the degradation of recording performance is of particular interest for chronic applications.

View Article and Find Full Text PDF

Invasive brain-machine interfaces can help restore function through the control of external devices while the addition of intracortical microstimulation (ICMS) can elicit sensations of touch and help provide further benefits for individuals living with sensorimotor deficits. However, the extent of tactile information that can be conveyed through ICMS has not been fully explored. In a human participant with spinal cord injury and chronically implanted microelectrode arrays, we used ICMS to the somatosensory cortex to provide grip force feedback in the hands during grasping of objects with varying stiffness with a robotic arm.

View Article and Find Full Text PDF

The clinical success of brain computer interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. This study systematically quantified damage that microelectrodes sustained during chronical implantation in three people with tetraplegia for 956-2246 days. Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from eleven Neuroport arrays tipped with platinum (Pt, n=8) and sputtered iridium oxide film (SIROF, n=3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!