Meniscal injury presents a formidable challenge and often leads to functional impairment and osteoarthritic progression. Meniscus tissue engineering (MTE) is a promising solution, as conventional strategies for modulating local immune responses and generating a conducive microenvironment for effective tissue repair are lacking. Recently, magnesium-containing bioactive glass nanospheres (Mg-BGNs) have shown promise in tissue regeneration. However, few studies have explored the ability of Mg-BGNs to promote meniscal regeneration. First, we verified the anti-inflammatory and fibrochondrogenic abilities of Mg-BGNs in vitro. A comprehensive in vivo evaluation of a rabbit critical-size meniscectomy model revealed that Mg-BGNs have multiple effects on meniscal reconstruction and effectively promote fibrochondrogenesis, collagen deposition, and cartilage protection. Multiomics analysis was subsequently performed to further explore the mechanism by which Mg-BGNs regulate the regenerative microenvironment. Mechanistically, Mg-BGNs first activate the TRPM7 ion channel through the PI3K/AKT signaling pathway to promote the cellular function of synovium-derived mesenchymal stem cells and then activate the PPARγ/NF-κB axis to modulate macrophage polarization and inflammatory reactions. We demonstrated that Mg is critical for the crosstalk among biomaterials, immune cells, and effector cells in Mg-BGN-mediated tissue regeneration. This study provides a theoretical basis for the application of Mg-BGNs as nanomedicines to achieve in situ tissue regeneration in complex intrajoint pathological microenvironments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889361 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2025.02.016 | DOI Listing |
Biotechnol Bioeng
March 2025
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China.
Electrical stimulation (ES) can effectively regulate cell behavior and promote bone tissue regeneration, and conductive biomaterials can further enhance this effect by enhancing the conduction of electrical signals between cells. In this study, poly(lactic-co-glycolic acid) (PLGA) and poly(l-lactide)-aniline pentamer triblock copolymer (PAP) were used as raw materials to prepare a conductive bionic scaffold (PLGA/PAP). Subsequently, bone morphogenetic protein 2 mimetic peptide containing a DOPA tag (DBMP2MP) was loaded on the scaffold surface.
View Article and Find Full Text PDFFront Plant Sci
February 2025
University Centre for Research and Development, Chandigarh University, Mohali, India.
Cassava is a crucial source of daily calorie intake for millions of people in sub-Saharan Africa (SSA) but has an inferior protein content. Despite numerous attempts utilizing both traditional and biotechnological methods, efforts to address protein deficiency in cassava have yet to meet with much success. We aim to leverage modern biotechnologies to enhance cassava's nutritional value by creating bioengineered cassava cultivars with increased protein and starch content.
View Article and Find Full Text PDFInt J Nanomedicine
March 2025
Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
Metal-based nanoparticles (MNPs) have great potential for applications in wound healing and tissue engineering, and due to their unique structures, high bioactivities, and excellent designability characteristics, an increasing number of studies have been devoted to modifying these species to generate novel composites with desirable optical, electrical, and magnetic properties. However, few systematic and detailed reviews have been performed relating to the modification approaches available for MNPs and their resulting composites. In this review, a comprehensive summary is performed regarding the optimized modification formulations of MNPs for application in wound dressings, and the techniques used to prepare composite wound dressings are discussed.
View Article and Find Full Text PDFJ Extracell Biol
March 2025
Genes and Human Disease Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA.
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole-body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Urology, Affiliated Hospital of Jiangsu University, 438 North Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China.
Recent advancements in tissue engineering offer promising solutions for the repair and reconstruction of the urinary system, particularly in cases of urinary organ injuries. Historically, autologous tissue grafts and allografts have been the primary options for repairing damaged tissues. However, these approaches often lead to complications such as immune rejection, donor site morbidity, and functional limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!