A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep-blue phosphorescence from platinum(ii) bis(acetylide) complexes with sulfur-bridged dipyridyl ligands. | LitMetric

New approaches to prepare rarer emitters such as those that are deep-blue are needed to advance OLED technologies. Here, we demonstrate that a series of new platinum(ii) bis(acetylide) complexes [Pt(N-N)(C[triple bond, length as m-dash]CPh)] containing sulfur-bridged dipyridyl ligands (N-N) with various sulfur oxidation states: sulfide (S), sulfoxide (SO) and sulfone (SO) give access to variable emission colors from green to deep-blue. Spectroscopic, electrochemical and computational studies show that mixed character excited states have energies which are significantly influenced by the oxidation state of sulfur and the presence of substituents. The sulfide and sulfoxide complexes are non-emissive in the solution state, while the sulfone complexes display MLCT/LLCT excited-state yellow phosphorescence. In PMMA films the sulfide and sulfoxide complexes show intense deep-blue phosphorescence and green phosphorescence for the sulfone complexes, with photoluminescence quantum yields ranging from 0.35-0.91. Here we demonstrate the capability of changing the photophysical properties of these metal emitters by varying the oxidation state of sulfur to achieve intense deep-blue and green emitters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886617PMC
http://dx.doi.org/10.1039/d4sc08205bDOI Listing

Publication Analysis

Top Keywords

sulfide sulfoxide
12
deep-blue phosphorescence
8
platinumii bisacetylide
8
bisacetylide complexes
8
sulfur-bridged dipyridyl
8
dipyridyl ligands
8
oxidation state
8
state sulfur
8
sulfoxide complexes
8
sulfone complexes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!