Recognition-encoded melamine oligomers (REMO) are synthetic polymers composed of repeating triazine-piperazine units and equipped with phenol and phosphine oxide side-chains. Short oligomers have previously been shown to form length- and sequence-selective H-bonded duplexes in non-polar solvents. Here, automated solid phase synthesis was used to prepare homo-sequence REMO with either twelve phenol recognition units or twelve phosphine oxide recognition units. The ends of the oligomers were functionalised with an azide and an alkyne group to allow investigation of duplex formation by covalent trapping with copper-catalysed azide-alkyne cycloaddition (CuAAC) reactions. The oligomers were also functionalised with a dansyl fluorophore or a dabcyl quencher dye to allow investigation of duplex formation by Förster resonance energy transfer (FRET). Covalent trapping showed that the duplex is the major species present in a 1 : 1 mixture of the phenol 12-mer and phosphine oxide 12-mer at micromolar concentrations in dichloromethane. FRET titration experiments showed that the association constant for duplex formation is greater than 10 M in chloroform, and DMSO denaturation experiments showed that duplex formation is highly cooperative. The Hill coefficient for denaturation of the 12-mer duplex was 4.6, which is significantly higher than the value measured for the corresponding 6-mer duplex (1.9). This behaviour mirrors that observed for nucleic acid duplexes, where denaturation becomes increasingly cooperative as more base-pairs are added to the duplex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886990PMC
http://dx.doi.org/10.1039/d4sc08591dDOI Listing

Publication Analysis

Top Keywords

duplex formation
16
phosphine oxide
12
h-bonded duplexes
8
recognition-encoded melamine
8
melamine oligomers
8
recognition units
8
oligomers functionalised
8
allow investigation
8
duplex
8
investigation duplex
8

Similar Publications

By combining in silico, biophysical, and in vitro experiments, we decipher the topology, physical, and potential biological properties of hybrid-parallel nucleic acids triplexes, an elusive structure at the basis of life. We found that hybrid triplex topology follows a stability order: r(Py)-d(Pu)·r(Py) > r(Py)-d(Pu)·d(Py) > d(Py)-d(Pu)·d(Py) > d(Py)-d(Pu)·r(Py). The r(Py)-d(Pu)·d(Py) triplex is expected to be preferred in the cell as it avoids the need to open the duplex reducing the torsional stress required for triplex formation in the r(Py)-d(Pu)·r(Py) topology.

View Article and Find Full Text PDF

Gp2.5, an essential single-stranded DNA-binding protein encoded by bacteriophage T7, is integral to various steps of DNA metabolism. Unlike other single-stranded DNA binding proteins, it greatly facilitates the annealing of complementary DNA strands.

View Article and Find Full Text PDF

Members of the Pol A family of DNA polymerases, found across all domains of life, utilize various strategies for DNA strand separation during replication. In higher eukaryotes, mitochondrial DNA polymerase γ relies on the replicative helicase TWINKLE, whereas the yeast ortholog, Mip1, can unwind DNA independently. Using Mip1 as a model, we present a series of high-resolution cryo-EM structures that capture the process of DNA strand displacement.

View Article and Find Full Text PDF

This report presents our discoveries that include the successful hybridization of grafted single-walled carbon nanotubes (SWCNTs) with dsDNA to form pseudo triplex-DNA. These tubes are attached with distinctive five-membered N-containing heterocycles (i.e.

View Article and Find Full Text PDF

Recognition-encoded melamine oligomers (REMO) are synthetic polymers composed of repeating triazine-piperazine units and equipped with phenol and phosphine oxide side-chains. Short oligomers have previously been shown to form length- and sequence-selective H-bonded duplexes in non-polar solvents. Here, automated solid phase synthesis was used to prepare homo-sequence REMO with either twelve phenol recognition units or twelve phosphine oxide recognition units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!