Safety of lithium-ion batteries (LIBs) has garnered significant attention. As an essential component of batteries, the separator plays a crucial role in separating the positive and negative electrodes, preventing short circuits, and allowing ion transport. Therefore, it is necessary to develop a high-performance separator that is both thermally stable and capable of rapid Li transport. Polyimide (PI) is a material with high thermal stability, but low electrolyte wettability and high interfacial resistance of PI restrict its application in high-performance LIBs batteries. MXene possesses excellent mechanical properties and good electrolyte affinity. PI/MXene nanofiber composite separator. Combines the high thermal stability of PI with the superior electrolyte wettability of MXene. It exhibits a high tensile strength of 19.6 MPa, low bulk resistance (2.5 Ω), and low interfacial resistance (174 Ω), as well as a low electrolyte contact angle of 29°, while retaining the high-temperature resistance and flame retardancy of PI. Batteries assembled with this composite separator demonstrated a specific capacity of 111.0 mAh g and a capacity retention rate of 66% at 2C. In long-term cycling tests of LiFePO₄ half-cells at 1C, after 200 charge-discharge cycles, the PI/MXene battery showed a discharge specific capacity of 126.7 mAh g and a capacity retention rate of 91%. Additionally, the battery operated normally at 120°C. The composite separator, by integrating the high thermal stability of PI with the excellent electrolyte wettability and conductivity of MXene, demonstrates significant advantages in enhancing battery safety and cycling performance. Through this composite structure can provide a more reliable and safe solution for high-performance LIBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885268 | PMC |
http://dx.doi.org/10.3389/fchem.2025.1555323 | DOI Listing |
Nanomaterials (Basel)
March 2025
Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
The construction of heterojunctions can effectively inhibit the rapid recombination of photogenerated electrons and holes in photocatalysts and offers great potential for pollutant degradation. In this study, a Z-scheme heterojunction g-CN/WO photocatalyst was synthesized using a combination of hydrothermal and calcination methods. The photocatalytic degradation performance was tested under visible light; the degradation efficiency of Rh B reached 97.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Renewable Energy Laboratory, National Laboratory Astana (NLA), Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
Reduced graphene oxide (rGO) was synthesized by chemically reducing graphene oxide (GO) using a reducing agent. The product, rGO, showed excellent hydrophobicity, as indicated by its high-water contact angle, which was greater than 150°. Characterizations using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) were used to analyze the composition and structural differences between GO and the superhydrophobic rGO material.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid.
View Article and Find Full Text PDFNat Commun
March 2025
Max Planck Institute for Polymer Research, 55128, Mainz, Germany.
Biomolecular condensates formed by proteins and nucleic acids are critical for cellular processes. Macromolecule-based coacervate droplets formed by liquid-liquid phase separation serve as synthetic analogues, but are limited by complex compositions and high molecular weights. Recently, short peptides have emerged as an alternative component of coacervates, but tend to form metastable microdroplets that evolve into rigid nanostructures.
View Article and Find Full Text PDFMol Biol Cell
April 2025
Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616.
The mitotic spindle, which uses microtubules (MTs) and MT-based motor proteins to separate sister chromosomes prior to cell division, contains abundant membranes, organelles, and protein assemblies derived from the familiar interphase intracellular membrane network. In this essay, mainly with reference to selected animal and fungal cells, I summarize current ideas about the reciprocal functional relationship between these mitotic spindle-associated membranes and the spindle MT cytoskeleton, in which; 1) spindle membranes control the composition, Ca ion concentration and mechanical performance of the spindle MT cytoskeleton; and conversely 2) the spindle MT cytoskeleton contributes to membrane/organelle partitioning and inheritance during cell division and serves as a reservoir of membranes, organelles, and vesicles for delivery to the interphase cytoplasm, plasma membrane, and cleavage furrow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!