Changes in cell type composition play an important role in human health and disease. Recent advances in single-cell technology have enabled the measurement of cell type composition at increasing cell lineage resolution across large cohorts of individuals. Yet this raises new challenges for statistical analysis of these compositional data to identify changes in cell type frequency. We introduce crumblr (DiseaseNeurogenomics.github.io/crumblr), a scalable statistical method for analyzing count ratio data using precision-weighted linear mixed models incorporating random effects for complex study designs. Uniquely, crumblr performs statistical testing at multiple levels of the cell lineage hierarchy using a multivariate approach to increase power over tests of one cell type. In simulations, crumblr increases power compared to existing methods while controlling the false positive rate. We demonstrate the application of crumblr to published single-cell RNA-seq datasets for aging, tuberculosis infection in T cells, bone metastases from prostate cancer, and SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888541 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-5921338/v1 | DOI Listing |
Elife
March 2025
Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.
View Article and Find Full Text PDFCancer Med
March 2025
Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.
Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.
Chem Commun (Camb)
March 2025
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
Herein, we present a hybrid polymer material with phosphonic acid and sulfonic acid moieties on a poly(pentafluorostyrene) backbone utilizing the SAr Michaelis-Arbuzov and the -fluoro-thiol reaction. Blending the hybrid material with a benzimidazole polymer yielded a mechanically stable membrane featuring proton conductivities up to three times higher than conventional Nafion N211 at temperatures above 120 °C.
View Article and Find Full Text PDFACS Biomater Sci Eng
March 2025
Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.
Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.
View Article and Find Full Text PDFJ Neurochem
March 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!