Permafrost thaw increases the bioavailability of ancient organic matter, facilitating microbial metabolism of volatile organic compounds (VOCs), carbon dioxide, and methane (CH). The formation of thermokarst (thaw) lakes in icy, organic-rich Yedoma permafrost leads to high CH emissions, and subsurface microbes that have the potential to be biogeochemical drivers of organic carbon turnover in these systems. However, to better characterize and quantify rates of permafrost changes, methods that further clarify the relationship between subsurface biogeochemical processes and microbial dynamics are needed. In this study, we investigated four sites (two well-drained thermokarst mounds, a drained thermokarst lake, and the terrestrial margin of a recently formed thermokarst lake) to determine whether biogenic VOCs (1) can be effectively collected during winter, and (2) whether winter sampling provides more biologically significant VOCs correlated with subsurface microbial metabolic potential. During the cold season (March 2023), we drilled boreholes at the four sites and collected cores to simultaneously characterize microbial populations and captured VOCs. VOC analysis of these sites revealed "fingerprints" that were distinct and unique to each site. Total VOCs from the boreholes included > 400 unique VOC features, including > 40 potentially biogenic VOCs related to microbial metabolism. Subsurface microbial community composition was distinct across sites; for example, methanogenic archaea were far more abundant at the thermokarst site characterized by high annual CH emissions. The results obtained from this method strongly suggest that ∼10% of VOCs are potentially biogenic, and that biogenic VOCs can be mapped to subsurface microbial metabolisms. By better revealing the relationship between subsurface biogeochemical processes and microbial dynamics, this work advances our ability to monitor and predict subsurface carbon turnover in Arctic soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885255 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1462941 | DOI Listing |
Front Microbiol
February 2025
Biological & Chemical Sensors, Sandia National Laboratories, Albuquerque, NM, United States.
Permafrost thaw increases the bioavailability of ancient organic matter, facilitating microbial metabolism of volatile organic compounds (VOCs), carbon dioxide, and methane (CH). The formation of thermokarst (thaw) lakes in icy, organic-rich Yedoma permafrost leads to high CH emissions, and subsurface microbes that have the potential to be biogeochemical drivers of organic carbon turnover in these systems. However, to better characterize and quantify rates of permafrost changes, methods that further clarify the relationship between subsurface biogeochemical processes and microbial dynamics are needed.
View Article and Find Full Text PDFEnviron Pollut
March 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China. Electronic address:
Surface ozone (O) pollution has become a pressing air quality issue in eastern China in recent years. However, studies comparing O formation in urban and rural areas remain limited. This study presents a field campaign focusing on volatile organic compounds (VOCs) conducted at two sites in the central Yangtze River Delta (YRD) region during the warm season (June to August) of 2023.
View Article and Find Full Text PDFACS EST Air
February 2025
Center for Energy and Environmental Resources, The University of Texas at Austin, Austin, Texas 78758, United States.
The impact of detailed spatial and temporal allocation of unconventional oil and gas development (UOGD) NOx emissions on predicted ozone formation was examined using hydraulic fracturing emissions in the Eagle Ford Shale region of Texas as a case study. Hydraulic fracturing occurs at specific well sites, lasting only 1-2 weeks prior to production. Four scenarios for spatial and temporal allocation of hydraulic fracturing NOx emissions were developed.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Helsinki, Helsinki, Finland.
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!