Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant-microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13873 | DOI Listing |
Plant Physiol
March 2025
Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose.
View Article and Find Full Text PDFFood Funct
March 2025
Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4068, Australia.
There has been a major growth in the development of plant-based meat alternatives (PBMA) in recent years. However, current PBMA often contain ultra processed ingredients and numerous additives to be able to mimic animal-based meat (ABM) including the meaty (umami) flavour, characteristic firm/chewy structure and juicy mouthfeel. In this review, the potential of ancient fermentation techniques as a minimally processed alternative to ABM and current PBMA are explored.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
February 2025
Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015 Odisha India.
Pteridophytes, encompassing ferns and fern allies, are integral components of terrestrial ecosystems worldwide. These vascular plants characterized by their spore-based reproduction, fulfil various ecological roles such as influencing biodiversity, soil stability, nutrient dynamics, and ecological succession. Similar to higher plants, pteridophytes too are known to have close symbiotic associations with a diverse array of microorganisms, including bacteria, fungi and actinomycetes.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
February 2025
Traditional Chinese Medicine Institute of Anhui Dabie Mountain, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012 China.
Unlabelled: The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism, playing a key role in the biosynthesis of both primary and secondary metabolites. However, the CYP450 has not yet been systematically characterized in Dendrobium species. In this study, 193 genes were identified in the genome of through bioinformatics, and divided into 2 groups and 10 clans.
View Article and Find Full Text PDFPlant Environ Interact
April 2025
There is a lack of studies examining the effects of prolonged waterlogging on both yield and nutrient uptake partitioning in teff. A greenhouse study was conducted to assess the impact of different durations of waterlogging on teff's growth, yield, nutrient uptake and partitioning among grain, straw, and root components. Teff plants were subjected to five waterlogging durations as days after transplanting (DAT) ranging from upland to waterlogging to the entire growing period (WHOLE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!