The need for efficient and reliable gas sensors has grown significantly due to increasing industrial activities, transportation, and environmental pollution, posing serious risks to human health and the environment. Advanced sensor technologies are crucial for detecting these harmful gases at low concentrations with a high accuracy. Nickel oxide, a p-type metal oxide semiconductor, has emerged as a promising candidate for gas sensing applications owing to its unique and excellent structural, electronic, and catalytic properties along with its high chemical stability. Interestingly, the possibility to synthesize NiO in versatile nanostructure forms: nanowires, nanoflowers, and nanospheres, helps to enhance surface area and porosity, which are critical factors to improve gas adsorption and diffusion. This review presents a comprehensive and critical assessment of the latest advancements in the synthesis, characterization, and gas-sensing performance of NiO nanostructures. We explore how structural modifications, such as decoration with noble metal nanoparticles, formation of different composites, and surface functionalization with self-assembly enhance the sensitivity, selectivity, and operational temperature of NiO sensors. Particular focus is given to the integration of NiO in novel nanoheterostructures, where the formation of p-n and p-p junctions significantly improves charge transport and overall sensor response. Finally, we identify current challenges in reproducibility, stability, and operating conditions, while offering directions for future research on tailoring NiO nanostructures for more effective, scalable, and robust sensor technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c02946 | DOI Listing |
ACS Sens
March 2025
SENSOR Laboratory, Department of Information Engineering (DII), University of Brescia, Via D. Valotti 9, Brescia 25133, Italy.
The need for efficient and reliable gas sensors has grown significantly due to increasing industrial activities, transportation, and environmental pollution, posing serious risks to human health and the environment. Advanced sensor technologies are crucial for detecting these harmful gases at low concentrations with a high accuracy. Nickel oxide, a p-type metal oxide semiconductor, has emerged as a promising candidate for gas sensing applications owing to its unique and excellent structural, electronic, and catalytic properties along with its high chemical stability.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Physics, Aligarh Muslim University, Aligarh, 202002, India.
Resistive Random Access Memory (ReRAM) is an emerging class of non-volatile memory that stores data by altering the resistance of a material within a memory cell. Unlike traditional memory technologies, ReRAM operates by using voltage to induce a resistance change in a metal oxide layer, which can then be read as a binary state (0 or 1). In this work, we present a flexible, forming-free, ReRAM device using an aluminium-doped zinc oxide (AZO) electrode and a nickel oxide (NiO) active layer.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China. Electronic address:
Soft-packaged supercapacitors (SCs) provide notable advantages, including high power density, high safety, and long lifespan, yet their application is still relatively limited due to the low energy density and insufficient cycle stability. To assess their practicality, we employed a simple in-situ nucleation assembly and high-temperature calcination strategy tofabricate boron-modified single-walled carbon nanotubes-enhanced nickel oxide (B-(NiO@SWNT)) electrodes, characterised by rich oxygen vacancies (O) and high specific surface area. The results demonstrated that the B-(NiO@SWNT) electrode provided a formidable specific capacitance of 1257.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
The p-i-n type perovskite solar cells with a nickel oxide (NiOx) hole transport layer in combination with self-assembled monolayers (SAMs) have a high power conversion efficiency (PCE) of over 26%. The surface properties of the SAM layer have a significant impact on the growth and crystallization of the perovskite film. In the meanwhile, defects formed during thermal annealing at the SAM layer and the perovskite layer interface would act as charge recombination centers, decreasing device performance and stability.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China.
Ultra-high nickel layered oxides are recognized as promising cathode candidates for high-energy-density lithium-ion batteries due to their enhanced overall capacity and elevated operating voltage. However, the interlayer sliding of transition metal-oxygen octahedra (TMO6) and the instability of lattice oxygen at high voltages for ultra-high nickel oxide cathodes pose significant challenges to their development. Herein, the origin of oxygen framework stability is investigated by incorporating high-covalent element Mo in both bulk and surface using a one-step integrated method for ultra-high nickel cathode material LiNiCoO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!