Azodicarbonamide (ADA) is selected as an additive to the polymer electrolyte (PE) to improve the stability of the NaFeMnNiO cathode. ADA can capture hydrogen from the polymer and induce local structures, enhancing the ionic conductivity of the PE. Moreover, the dehydrogenated ADA can bond to Fe ions, preventing the PE from decomposing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc06753cDOI Listing

Publication Analysis

Top Keywords

designing interfacially
4
interfacially stable
4
stable na-ion
4
na-ion polymer
4
polymer electrolytes
4
electrolytes tailored
4
tailored local
4
local solvation
4
solvation structures
4
structures azodicarbonamide
4

Similar Publications

Glass-confined carbon dots: transparent afterglow materials with switchable TADF and RTP.

Nanoscale

March 2025

Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.

The confined synthesis of carbon dots (CDs) in solid matrixes is a promising avenue for developing new afterglow materials. Benefiting from the advantages of the sol-gel preparation of nanoporous glass, we report transparent glass-confined CDs with tunable afterglow luminescence. Switchable thermally-activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) of CDs were achieved by adjusting the sintering temperature and ion doping.

View Article and Find Full Text PDF

Manipulating Interfacial Stability via Preferential Absorption for Highly Stable and Safe 4.6 V LiCoO Cathode.

Nanomicro Lett

March 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, People's Republic of China.

Elevating the upper cutoff voltage to 4.6 V could effectively increase the reversible capacity of LiCoO (LCO) cathode, whereas the irreversible structural transition, unstable electrode/electrolyte interface and potentially induced safety hazards severely hinder its industrial application. Building a robust cathode/electrolyte interface film by electrolyte engineering is one of the efficient approaches to boost the performance of high-voltage LCO (HV-LCO); however, the elusive interfacial chemistry poses substantial challenges to the rational design of highly compatible electrolytes.

View Article and Find Full Text PDF

Carbon Doping and Oxygen Vacancy-Tungsten Trioxide/CuSnS S-Scheme Heterojunctions for Boosting Visible-Light-Driven Photocatalytic Performance.

ACS Appl Mater Interfaces

March 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P. R. China.

Developing ideal photocatalysts for energy regeneration and environmental remediation by combining the advantages of individual semiconductors remains a significant challenge. Herein, tungsten trioxide (WO)/CuSnS S-scheme heterojunction composite photocatalysts are developed. Initially, doped oxygen vacancy (OV) was prepared on two-dimensional WO nanosheets by direct calcination method.

View Article and Find Full Text PDF

Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".

View Article and Find Full Text PDF

Stacking induced symmetry breaking and gap opening in Dirac half-metal MnF.

Phys Chem Chem Phys

March 2025

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Two-dimensional ferromagnetic materials have a broader development prospect in the field of spintronics. In particular, the high spin polarization system with half-metallic characteristics can be used as an efficient spin injection electrode. first-principles calculations, we predict that monolayer MnF has Dirac half-metallic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!