essential oil (LCEO) has various bioactivities and wide applications. However, most reported LCEOs are directly extracted from plants, and studies on further processing of LCEO to enrich bioactive components using modern separation techniques are scarce. In this study, LCEO was extracted by hydrodistillation and further processed via vacuum fractional distillation (VFD) and molecular distillation (MD). The chemical compositions of LCEO and seven distillates were analyzed, and the activities of the EOs and eight individual constituents against seven bacteria were tested. Distillates VFD3 and MDH2 showed the best activity against , , and . VFD3 exerted antibacterial action against by inhibiting biofilms, damaging the cell membrane and cell wall, and perturbing metabolic pathways. VFD and MD are effective processing methods for changing the chemical composition and enhancing the bioactivity of LCEO, which might be used to improve the quality and extend the applications of LCEO and other EOs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c11955 | DOI Listing |
Mater Horiz
March 2025
CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
The chemical and structural flexibility of hybrid organic-inorganic metal halide perovskites (HOIPs) provides an ideal platform for engineering not only their well-studied optical properties, but also their magnetic ones. In this review we present HOIPs from a new perspective, turning the attention to their magnetic properties and their potential as a new class of on-demand low-dimensional magnetic materials. Focusing on HOIPs containing transition metals, we comprehensively present the progress that has been made in preparing, understanding and exploring magnetic HOIPs.
View Article and Find Full Text PDFSmall Methods
March 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
Lithium (Li) metal batteries hold great promise for next-generation energy storage due to their high energy density. However, their application is hindered by uncontrollable Li plating/stripping, leading to limited cycle life, especially under practical conditions with a low negative/positive (N/P) capacity ratio. Here, it is demonstrated that stable cycling of low N/P ratio Li metal batteries can be realized by harnessing hetero-interfacial redox chemistry to regulate Li nucleation and deposition behavior.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea.
The grain sizes of solid electrolyte interphase (SEI) and solvation structure of electrolytes can affect Li ion transport across SEI and control the desolvation kinetics of solvated Li ions during fast-charging of Li-ion batteries (LIBs). However, the impact of the geometric structure of SEI grains on the fast charging capability of LIBs is rarely examined. Here, the correlation between the SEI grain size and fast charging characteristics of cells is explored, and the desolvation kinetics is controlled by replacing the strongly binding ethylene carbonate (EC) solvent with a weakly binding nitrile-based solvent under fast charging conditions.
View Article and Find Full Text PDFAdv Mater
March 2025
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
Transition metal tellurides (TMTes) are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical specific capacity and impressive electronic conductivity. Nevertheless, TMTes suffer from persistent capacity degradation due to the large volume expansion, high ion-diffusion energy barriers, and the dissolution/shuttle of potassium polytellurides (KTe). Herein, a heterostructured CoTe composite equipped with a self-catalytic center (N-CoTe/LTTC) is developed, exploiting its low-tortuosity tunneling, chemical tunability, and self-catalytic properties to elevate cycling stability to new heights.
View Article and Find Full Text PDFHeliyon
February 2025
Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology, Narmak 1684613114, Tehran, Iran.
This study presents a novel composite superabsorbent hydrogel (SAH) synthesized from nanosilica and polyacrylic acid, demonstrating exceptional efficacy in removing Congo Red dye from wastewater. Utilizing a fast concentration gradient method, we achieved the synthesis of nanosilica with a high specific surface area of 380 m/g, a total pore volume of 0.81 cm/g, and a mean pore diameter of 17 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!