Testicular ischemia/reperfusion injury (TI/RI) is a significant clinical contributor to subfertility and infertility resulting from testicular torsion and subsequent detortion. Insufficient nitric oxide (NO) synthesis in TI/RI can result in endothelial dysfunction, as the vascular endothelium fails to produce sufficient NO to sustain appropriate vasodilation and blood perfusion. Many studies have found that NO plays an important role in the I/RI and its increase or decrease can affect the progression and outcome of I/RI. However, the role of NO in I/RI is controversial and complicated. NO derived by endothelial NO synthase (eNOS) shows a protective role in I/RI, while excessive NO derived by inducible NO synthase (iNOS) accelerates inflammation and increases oxidative stress, further aggravating I/RI. Nevertheless, the overexpression of eNOS may exacerbate I/RI. Here we try to investigate the new progress in the understanding of the roles of NO during I/RI. This study examined the interplay between cytotoxic and cytoprotective mechanisms underpinning NO produced from L-citrulline (L-Cit) on TI/R injured rats. Thirty-two adult Sprague-Dawley albino rats were equally randomized into the following groups: normal control group, sham group, TI/R group (3 h/4 h), and TI/R + L-Cit group (600 mg/kg) orally at 1 h before reperfusion. Compared to the TI/R-operated group, the injection of L-Cit markedly enhanced serum concentrations of reproductive hormones (p < 0.05). Elevated SOD, CAT, and GPx activity, along with reduced MDA and NO concentrations, indicated a diminished oxidative stress. The testicular levels of TNF-α, IL-1β, caspase-3, BAX, eNOS, iNOS, and NF-κB p65 were markedly reduced. Histopathological analysis corroborated the protective effect of L-Cit. The findings confirmed molecular models, demonstrating that L-Cit inhibited eNOS, iNOS, and IKKβ. The results showed that giving torsioned rats NO made from L-Cit protected them against hormonal imbalance, oxidative stress, inflammation, and apoptosis in I/RI. This makes L-Cit even more important for protecting against tissue I/RI during surgery. L-Cit not only promoted NO synthesis through eNOS activation, but it also facilitated the neutralization of iNOS production and its pathogenic NO levels during the reperfusion phase in I/R-injured rats.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.2913DOI Listing

Publication Analysis

Top Keywords

role i/ri
12
testicular ischemia/reperfusion
8
ischemia/reperfusion injury
8
nitric oxide
8
i/ri
7
group
5
l-citrulline alleviates
4
alleviates testicular
4
injury rats
4
rats modulating
4

Similar Publications

Testicular ischemia/reperfusion injury (TI/RI) is a significant clinical contributor to subfertility and infertility resulting from testicular torsion and subsequent detortion. Insufficient nitric oxide (NO) synthesis in TI/RI can result in endothelial dysfunction, as the vascular endothelium fails to produce sufficient NO to sustain appropriate vasodilation and blood perfusion. Many studies have found that NO plays an important role in the I/RI and its increase or decrease can affect the progression and outcome of I/RI.

View Article and Find Full Text PDF

Metformin exerts antidiabetic and pleiotropic effects. This study investigated the function and mechanisms of gasotransmitters and autophagy in the metformin-induced protection against ischemia/reperfusion injury (I/RI). According to measurements of serum hepatic function indicators and histopathological evaluation, metformin protected against hepatic I/RI-induced impairment of liver function and structure.

View Article and Find Full Text PDF

HACE1 protects against myocardial ischemia-reperfusion injury via inhibition of mitochondrial fission in mice.

BMC Cardiovasc Disord

February 2025

Department of Cardiology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong, 252000, P.R. China.

Background: HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1 (HACE1) has been found to be associated with mitochondrial protection. Mitochondrial damage is a critical contributor to myocardial ischemia-reperfusion injury (I/RI). However, little is known about the role of HACE1 in the pathogenesis of myocardial I/RI.

View Article and Find Full Text PDF

The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how diabetic heart tissue (myocardium) changes its metabolism when subjected to ischemia-reperfusion injury (I/RI), which can lead to heightened vulnerability during surgeries.
  • Researchers used metabolomic techniques and single-cell RNA sequencing to analyze heart tissue from different mouse models to identify specific metabolic alterations and mechanisms involved.
  • Findings revealed that diabetic myocardium had increased fatty acid metabolism but reduced glucose utilization and glycolysis ability after I/RI, highlighting the role of the PPARA signaling pathway in this metabolic reprogramming.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!