Many vegetation phenological models predominantly rely on temperature, overlooking the critical roles of water availability and soil characteristics. This limitation significantly impacts the accuracy of phenological projections, particularly in water-limited ecosystems. We proposed a new approach incorporating soil enthalpy-a comprehensive metric integrating soil moisture, temperature, and texture-to improve phenological modeling. Using an extensive dataset combining FLUXNET observations, solar-induced fluorescence (SIF), and meteorological data across the Northern Hemisphere (NH), we analyzed the relationship between soil enthalpy and vegetation phenology from 2001 to 2020. Our analysis revealed significant temporal trends in soil enthalpy that corresponded with changes in leaf onset date (LOD) and leaf senescence date (LSD). We developed and validated a new soil enthalpy-based model with optimized parameters. The soil enthalpy-based model showed particularly strong performance in autumn phenology, improving LSD simulation accuracy by at least 15% across all vegetation types. For shrub and grassland ecosystems, LOD projections improved by more than 12% compared to the temperature-based model. Future scenario analysis using CMIP6 data (2020-2054) revealed that the temperature-based model consistently projects earlier LOD and later LSD compared to the soil enthalpy-based model, suggesting potential overestimation of growing season length in previous studies. This study establishes soil enthalpy as a valuable metric for phenological modeling and highlights the importance of incorporating both water availability and soil characteristics for more accurate predictions of vegetation phenology under changing climatic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.70116 | DOI Listing |
Glob Chang Biol
March 2025
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
Many vegetation phenological models predominantly rely on temperature, overlooking the critical roles of water availability and soil characteristics. This limitation significantly impacts the accuracy of phenological projections, particularly in water-limited ecosystems. We proposed a new approach incorporating soil enthalpy-a comprehensive metric integrating soil moisture, temperature, and texture-to improve phenological modeling.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
Suitable planting systems are critical for the physicochemical and bioactivities of strawberry ( Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al species. The number of active sorption sites associated with Al species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent.
View Article and Find Full Text PDFFood Chem X
December 2024
School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China.
The effect of mixed fermentation with sourdough and lactic acid bacteria ( and ), the physicochemical indexes, storage characteristics of dough and bun were investigated. Compared with sourdough-only dough and bun, the mixed fermentation significantly increase the total phenol, flavonoid and hydrolyzed amino acid content of the dough, the specific volume and height-diameter ratio of mixed fermentation bun increased significantly by 18.3 % and 7.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!