Hyperuricemic nephropathy (HN) represents a prevalent complication of hyperuricemia, typified by tubular dysfunction, inflammation, and progressive renal fibrosis with unclear mechanisms. Ferroptosis, an iron-dependent regulated cell death, is implicated in multiple diseases, but has rarely been linked to HN. In this study, we aim to explore the possible role of ferroptosis in HN and its underlying mechanisms. We showed that urate oxidase knockout mice, a model of hyperuricemia, exhibited renal impairment with elevated uric acid, creatinine, and blood urea nitrogen levels, accompanied by increased iron deposition and decreased glutathione peroxidase 4 (GPX4) and xCT expressions, suggesting ferroptosis involvement. Ferroptosis inhibitor Ferrostatin-1 (Fer-1) ameliorated renal injury, inflammatory cell infiltration, and fibrosis in these mice. Mechanistically, Fer-1 restored antioxidant protein levels, normalized ferroptosis-associated protein expressions, diminished iron overload and lipid peroxidation, and suppressed inflammatory markers and mitogen-activated protein kinase signaling. , monosodium urate crystals induced ferroptosis in human kidney 2 cells, characterized by increased lipid peroxidation and iron accumulation. Notably, receptor for advanced glycation end products (RAGE) inhibition alleviated renal injury, inflammation, and fibrosis albeit without directly diminishing ferroptosis. These findings were validated in human hyperuricemia-related kidney disease samples showing increased iron deposition, decreased GPX4, and elevated RAGE expression. This study suggests that ferroptosis may play a role in the development of renal injury, inflammation, and fibrosis in HN, potentially mediated through RAGE signaling. While RAGE inhibition improved renal injury, it did not directly affect ferroptosis, indicating a complex and context-dependent role of RAGE in kidney injury. These findings highlight ferroptosis and its associated pathways, including RAGE signaling, as potential therapeutic targets for HN. 00, 000-000.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2024.0672 | DOI Listing |
Acta Anaesthesiol Scand
April 2025
Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg and Section for Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Acute kidney injury (AKI) is a serious complication after lung transplantation, but the reported incidence varies in the literature. No data on AKI have been published from the Swedish lung transplantation program.
Methods: The aim of our study was to investigate the incidence, perioperative risk factors, and effects of early postoperative acute kidney injury (Kidney Disease Improving Global Outcomes [KDIGO] criteria) after lung transplantation.
J Inflamm Res
March 2025
Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi'an, Shaanxi, People's Republic of China.
Purpose: The incidence of candidemia, mediated by systemic () infection, was increasing. It is an urgent need to understand the underlying disease mechanisms to identify new therapeutic targets. This study aimed to investigate the roles of adenosine-adenosine receptor signal in systemic infection.
View Article and Find Full Text PDFJ Transl Med
March 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Background: Acute kidney injury (AKI) is a common and severe clinical condition. However, the underlying mechanisms of AKI have not been fully elucidated, and effective treatment options remain limited. Studies have shown that immune cells play a critical role in AKI, with regulatory T cells (Tregs) being one of the most important immunosuppressive lymphocytes.
View Article and Find Full Text PDFNat Med
March 2025
Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
African American (AA) kidney transplant recipients exhibit a higher rate of graft loss compared with other racial and ethnic populations, highlighting the need to identify causative factors. Here, in the Genomics of Chronic Allograft Rejection cohort, pretransplant blood RNA sequencing revealed a cluster of four consecutive missense single-nucelotide polymorphisms (SNPs), within the leukocyte immunoglobulin-like receptor B3 (LILRB3) gene, strongly associated with death-censored graft loss. This SNP cluster (named LILRB3-4SNPs) encodes missense mutations at amino acids 617-618 proximal to a SHP1/2 phosphatase-binding immunoreceptor tyrosine-based inhibitory motif.
View Article and Find Full Text PDFCommun Biol
March 2025
Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!