Mimicked by the structure of dimethyl sulfoxide propionate (DMSP), a novel zwitterion monomer of -methylacryloyl -methyl l-cysteine methyl sulfonium salt (NMASMCMS) was synthesized and characterized for the first time through three steps using l-cysteine as a starting material. Poly(NMASMCMS) brushes were constructed on PET sheets via surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The physical and chemical structures were characterized by water contact angle (WCA), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The polymer brush grafted sheets (PET-B) had good hydrophilicity and high lubricity. Moreover, PET-B sheets exhibited excellent antifouling and hemocompatible properties with low protein adsorption, bacterial adhesion, platelet adhesion, and hemolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c01470 | DOI Listing |
JAMA Cardiol
March 2025
Department of Cardiovascular Medicine and Section on Geriatrics and Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
Importance: Excess body fat plays a pivotal role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). HU6 is a novel, controlled metabolic accelerator that enhances mitochondrial uncoupling resulting in increased metabolism and fat-specific weight loss.
Objective: To assess efficacy and safety of HU6 in reducing body weight, improving peak volume of oxygen consumption (VO2) and body composition among patients with obesity-related HFpEF.
Invest Ophthalmol Vis Sci
March 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States.
Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.
View Article and Find Full Text PDFChem Rec
March 2025
College of Chemistry & Chemical Engineering, Qingdao University, Qingdao, 266071, China.
Biomolecule-engineered metal-organic frameworks (Bio-MOFs) are designed by incorporating biomolecules into or onto MOFs through covalent and non-covalent interactions. These composite frameworks exhibit unique catalytic and biological activities, making them highly suitable for various biocatalytic applications. In this review, we highlight recent advances in the material design, bioengineering methods, structural and functional regulation techniques, and biocatalytic applications of Bio-MOFs.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
Pyroptosis, a form of programmed cell death mediated by the gasdermin family, has emerged as a promising strategy for inducing anti-tumor immunity. However, efficiently inducing pyroptosis in tumor cells remains a significant challenge due to the limited activation of key mediators like caspases in tumor tissues. Herein, a self-priming pyroptosis-inducing agent (MnNZ@OMV) is developed by integrating outer membrane vesicles (OMVs) with manganese dioxide nanozymes (MnNZ) to trigger pyroptosis in tumor cells.
View Article and Find Full Text PDFSmall Methods
March 2025
Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
Quantum dots (QDs), particularly those in the short-wavelength infrared (SWIR) range, have garnered significant attention for their unique optical and electrical properties resulting from 3D quantum confinement. Among the various chalcogenide-based QDs, lead chalcogenides, such as PbS and PbSe, are extensively studied for infrared photodetection applications. While PbSe QDs offer advantages over PbS, including a narrower bandgap and higher carrier mobility, they suffer from stability issues due to surface oxidation and particle aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!