Although graphene's superior electrical, optoelectronic, thermal, and mechanical properties have been evident for 20 years now, its poor water dispersibility has hindered its incorporation in many types of applications and technologies. Strong examples of this are biomedical and environmental applications and devices that require non-toxic, biocompatible media and not toxic organic solvents like N-N'-Dimethylformamide, in which graphene is readily dispersible. In this work, we investigate a new way to prepare high-concentration and stable graphene dispersions in water by employing porphyrin-based compounds as stabilisers. To this end, electrochemically exfoliated graphene (EEG) and assess the potential of five porphyrins and metalloporphyrins are prepared to disperse EEG in water successfully. The dispersibility and stability of EEG in each porphyrin aqueous solution are evaluated by recording their UV-vis absorption spectra. Two of the synthesised compounds, namely sodium salt of 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin or TCPP and sodium salt of [5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrinato]tin(IV) or Sn-TCPP , are successful in stably dispersing EEG in water. The intermolecular interaction between the EEG flakes and [HTCPP]Na and [Sn(OH)TCPP]Na molecules are investigated via fluorescence emission spectroscopy. Finally, solid thin films of the EEG(TCPP) and EEG(Sn-TCPP) dispersions are prepared via spray-coating, and their optoelectronic properties and surface morphology are investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401431 | DOI Listing |
Nanomaterials (Basel)
February 2025
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Material Science and Engineering, Peking University, Beijing 100871, China.
The integration of two-dimensional (2D) nanomaterials into polymer-based packaging presents a promising avenue for sustainable, high-performance materials. This perspective explores the roles of colloidal interactions in the assembly of 2D materials into thin films for packaging applications. We begin by analyzing the types of colloidal forces present in 2D nanomaterials and their impact on dispersion and stability.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
Sn-doped TiO-carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal-support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/TiSnO-C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China.
To enhance the electrocatalytic performance of a flexible Pd@CFs catalyst for methanol oxidation, deep cryogenic treatment in liquid nitrogen was introduced. The effects of the frequency and time of the deep cryogenic treatment on the surface crystal orientation, microstructure morphology, mechanical performance, and electrocatalytic performance for methanol oxidation were studied. The results showed that when the frequency of the deep cryogenic treatment was 2 times and the deep cryogenic time was 24 h, the electrocatalytic performance of the catalyst was the best.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
March 2025
Department of PG Studies and Research in Physics Albert Einstein Block UCS Tumkur University, Tumkur Karnataka-572103 India.
The title compound, CHNO, was synthesized by S2 reaction of bromo-methyl coumarin with 4,4-di-methyl-piperidine-2,6-dione. The mol-ecule crystalizes in the monoclinic system with space group 2/. The coumarin unit is almost planar with a dihedral angle between the aromatic rings of 0.
View Article and Find Full Text PDFAnal Chem
March 2025
Department of Chemistry, Atomic and Mass Spectrometry - A&MS Research Group, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent 9000, Belgium.
Novel low-dispersion ablation cell designs and highly efficient aerosol transport systems have enabled fast elemental mapping using laser ablation-ICP-mass spectrometry (LA-ICP-MS) at high spatial resolution and its application in various research fields. Nowadays, the fastest low-dispersion setups enable narrow single pulse responses (SPR, duration of the transient signal observed upon a single laser shot), which enhance the signal-to-noise ratio and boost the pixel acquisition rate attainable in elemental mapping applications. In this work, the analytical performance of a nanosecond 193 nm ArF* excimer-based kHz laser in combination with a low-dispersion tube-type ablation cell, coupled to an ICP-mass spectrometer equipped with a time-of-flight (ToF) analyzer, was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!