Testing diverse biomolecules and observing their dynamic interaction in complex biological systems in a label-free manner is critically important for terahertz (THz) absorption spectroscopy. However, traditionally employed micro/nanophotonic techniques suffer from a narrow operating resonance and strong absorption band interference from polar solutions preventing seriously reliable, on-demand biosensor integration. Here, a multifunctional THz plasmonic biosensing platform by leveraging multiple interfering resonances from quasi-bound states in the continuum designed to noninvasively and in situ track the temporal evolution of molecules in multiple analyte systems, is proposed. In contrast to conventional microphotonic sensors, this platform demonstrates substantially broadband performance and reduced footprints, allowing for simultaneous detection of diverse molecular vibrant at multiple spectral points through robust near-field interactions. Furthermore, this sensor enables real-time analysis of amino acid absorption as water evaporates despite its strong overlapping absorption bands in the THz range. By utilizing the real-time format of the reflectance method to acquire a comprehensive spectro-temporal data collection, this approach supports developing a deep neural network to discriminate and predict the composition and proportion of multiple mixtures, obviating the need for frequency scanning or microfluidic devices. This approach offers innovative viewpoints for exploring biological processes and provides valuable tools for biological analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202418147DOI Listing

Publication Analysis

Top Keywords

multifunctional terahertz
4
terahertz biodetection
4
biodetection enabled
4
enabled resonant
4
resonant metasurfaces
4
metasurfaces testing
4
testing diverse
4
diverse biomolecules
4
biomolecules observing
4
observing dynamic
4

Similar Publications

We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C).

View Article and Find Full Text PDF

Testing diverse biomolecules and observing their dynamic interaction in complex biological systems in a label-free manner is critically important for terahertz (THz) absorption spectroscopy. However, traditionally employed micro/nanophotonic techniques suffer from a narrow operating resonance and strong absorption band interference from polar solutions preventing seriously reliable, on-demand biosensor integration. Here, a multifunctional THz plasmonic biosensing platform by leveraging multiple interfering resonances from quasi-bound states in the continuum designed to noninvasively and in situ track the temporal evolution of molecules in multiple analyte systems, is proposed.

View Article and Find Full Text PDF

Microwave photonics, with its advanced high-frequency signal processing capabilities, is expected to play a crucial role in next-generation wireless communications and radar systems. The realization of highly integrated, high-performance, and multifunctional microwave photonic links will pave the way for its widespread deployment in practical applications, which is a significant challenge. Here, leveraging thin-film lithium niobate intensity modulator and programmable cascaded microring resonators, we demonstrate a tunable microwave photonic notch filter that simultaneously achieves high level of integration along with high dynamic range, high link gain, low noise figure, and ultra-high rejection ratio.

View Article and Find Full Text PDF

In this paper, a vanadium dioxide (VO)-based terahertz device is proposed to realize the conversion between broadband absorption and broadband transmission functions, including the VO bottom layer, dielectric layer and VO pattern layer in a three-layer structure. With the change of the VO conductivity, the terahertz metamaterial device can switch between broadband absorption and broadband transmission. When the device exhibits broadband transmission, it has a high transmittance of 90% for terahertz waves in the 5.

View Article and Find Full Text PDF

Meter-Scale Wearable Multifunctional Core-Shell Nanofiber Textiles for Ultra-Broadband Electromagnetic Interference Shielding and Infrared Stealth.

Adv Mater

March 2025

School of Materials Science and Engineering (National Institute for Advanced Materials), Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China.

The rapid development of wireless communication and infrared (IR) detection technologies has generated an increasing demand for large-size high-performance wearable electromagnetic interference (EMI) shielding and IR stealth textiles. Herein, meter-scale MXene/graphene oxide (MG)@monstera nanocellulose (MC) core-shell nanofiber textiles are fabricated for the first time using a multi-stage cryogenic drying-assisted coaxial wet spinning assembly strategy, with MG as the conductive composite core and MC as the organic skeleton shell. The highly aligned shell and dense core endow the nanofibers with a great toughness of ≈39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!