Quercetin (QUE) is a phytoestrogen with known antitumor properties; however, its hydrophobic nature and low bioavailability limit its efficacy as an anticancer drug. To address this, we explored loading QUE onto a non-toxic nanocarrier. This study focused on the biological activity of magnetic iron oxide nanoparticles coated with polyethylene glycol (MAG@PEG) loaded with QUE (MAG@PEG@QUE) in MCF-7 cells. The MAG@PEG nanosystem was synthesized using a hydrothermal method, and QUE was incorporated by adding an alcoholic solution of QUE to an aqueous dispersion of MAG@PEG. QUE incorporation was confirmed qualitatively by FTIR spectroscopy and quantitatively through UV-visible spectroscopy. Cytotoxicity studies showed that MAG@PEG@QUE, at a concentration equivalent to the IC50 of free QUE, significantly reduced cell proliferation and viability while increasing apoptosis. MCF-7 cells treated with MAG@PEG@QUE also displayed actin cytoskeleton alterations typical of apoptotic cells. Transmission electron microscopy revealed clusters of magnetic nanoparticles within cellular vesicles. Targeted delivery of these nanoparticles was achieved using a static magnetic field, leading to high intracellular accumulation and selective cell death in targeted areas, without affecting adjacent cells. In conclusion, MAG@PEG@QUE shows comparable antitumor effects to free QUE and has the potential to enhance QUE's bioavailability and targeted delivery for breast cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2025.2477764DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
breast cancer
8
mcf-7 cells
8
targeted delivery
8
cells
5
quercetin-loaded magnetic
4
nanoparticles
4
nanoparticles promising
4
promising tool
4
tool antitumor
4

Similar Publications

Nanoparticles (NPs) have shown great potential in stabilizing foam for enhanced oil recovery (EOR). However, conventional NPs are difficult to recover and may contaminate produced oil, increasing operational costs. In contrast, superparamagnetic FeO NPs can be efficiently recovered using external magnetic fields, offering a sustainable solution for foam stabilization.

View Article and Find Full Text PDF

Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Extract and Their Separation Properties in Lubricant-Water Emulsions.

Nanomaterials (Basel)

March 2025

Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.

The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.

View Article and Find Full Text PDF

FeCo: Hysteresis, Pseudo-Critical, and Compensation Temperatures on Quasi-Spherical Nanoparticle.

Nanomaterials (Basel)

February 2025

Facultad de Ciencias Básicas, Departamento de Física y Electrónica, Universidad de Córdoba, Monteria 230002, Colombia.

We investigated the hysteresis, pseudo-critical, and compensation behaviors of a quasi-spherical FeCo alloy nanoparticle (2 nm in diameter) using Monte Carlo simulations with thermal bath-type algorithms and a 3D mixed Ising model. The nanostructure was modeled in a body-centered cubic lattice (BCC) through the following configurations: spin S=3/2 for Co and Q=2 for Fe. These simulations reveal that, under the influence of crystal and magnetic fields, the nanoparticle exhibits compensation phenomena, exchange bias, and pseudo-critical temperatures.

View Article and Find Full Text PDF

A new delivery system was designed and synthesized to increase the efficiency of Docetaxel. For this aim, γ-Fe2O3 was synthesized in order to give the nanoparticle the ability to be magnetic targeted. It was functionalized with citric acid to prevent clumping and maintain stability.

View Article and Find Full Text PDF

Magnetic Solid-Phase Extraction of Benzoic Acids in Fruit Juices Using Hydrophilic Metal-Organic Framework MIL-101(Cr) Coated with Magnetic Nanoparticles.

J Sep Sci

March 2025

Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, China.

In this study, magnetic FeO-coated metal-organic framework composites, CONH-MIL-101(Cr)/FeO, were synthesized by depositing FeO particles on the surface of amidated MIL-101(Cr). The scanning electron microscope images show that the MIL-101(Cr) crystals were uniformly coated by FeO particles. The magnetic hysteresis curve of CONH-MIL-101(Cr)/FeO reveals a saturated magnetization value of 23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!