Surface- and Spatial-Regulated Cd-Free Quantum Dots for Efficient, Mechanically Stable, and Full-Color Flexible Light-Emitting Diodes.

Adv Mater

Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China.

Published: March 2025

Flexible light-emitting diodes utilizing environmentally friendly cadmium (Cd)-free quantum dots (QDs) hold immense potential for next-generation wearable integrated displays. However, their overall performance lags behind Cd-based counterparts, and less research focuses on the suitability of QD layers in flexible devices. Herein, it is observed that the traditional surface oleate ligands on QDs readily detach under device operation after cycling bending, leading to increased surface defects and accumulated tensile stress in QDs layers, further diminishing their photoluminescence and electroluminescence performance. Based on these insights, a synergetic regulation strategy is developed employing a short-chain bidentate chelating ligand, diethyldithiocarbamate (DDTC), to strengthen the binding of QDs with ligands, minimizing ligand detaching and consequently inhibiting the non-radiative recombination of QDs; Meanwhile, the short-chain DDTC also reduces the inter-dot spatial distance and decreases the Young's modulus in QDs films, effectively dissipating stress localization and retaining the film morphology upon bending. Consequently, the resulting flexible devices based on blue ZnSeTe/ZnSe/ZnS QDs and green/red InP/ZnSe/ZnS QDs demonstrate the peak external quantum efficiencies of above 15% and maintain over 90% after 5000 bending cycles, rivaling state-of-the-art Cd-based flexible devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202420575DOI Listing

Publication Analysis

Top Keywords

flexible devices
12
cd-free quantum
8
quantum dots
8
flexible light-emitting
8
light-emitting diodes
8
qds
8
flexible
5
surface- spatial-regulated
4
spatial-regulated cd-free
4
dots efficient
4

Similar Publications

Molecular Chain Interpenetration-Enabled High Interfacial Compatibility of Ionic and Electronic Conductors for Stretchable Ionic Devices.

Adv Mater

March 2025

Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Advanced Materials, Department of Biomaterials, College of Materials, Institute of Flexible Electronics (IFE, Future Technologies), Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China.

Ionic devices find applications such as flexible electronics and biomedicines and function by exploiting hybrid circuits of mobile ions and electrons. However, the poor interfacial compatibility of hard electronic conductors with soft ionic conductors in ionic devices leads to low deformability, sensitivity, electromechanical responses, and stability. Herein, an interpenetrating interface between silicone-modified polyurethane/carbon nanotube electronic conductors and ionoelastomers in an ionic device using in situ polymerization is fabricated.

View Article and Find Full Text PDF

Programmable on-chip terahertz (THz) topological photonic devices are poised to address the rising need for high-capacity data systems, offering broad bandwidth, minimal loss, and reconfigurability. However, current THz topological chips rely on volatile tuning mechanisms that require continuous power to function. Here, a nonvolatile, programmable THz topological silicon chip is demonstrated that integrates a waveguide-cavity coupled system with phase-change material, GeSbTe (GST), enabling persistent and efficient functionality without constant power input.

View Article and Find Full Text PDF

A Novel Coating-Extrusion Method Enabled, High Energy, Power Density, and Scalable Production in Monolithically Integrated Energy Storage Fibers.

Adv Mater

March 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.

The rise of wearable electronics demands flexible energy storage solutions like flexible fiber energy storage devices (FESDs), known for their flexibility and portability. However, it remains difficult for existing fabrication methods (typically, finite-coating, thermal-drawing, and solution-extrusion) to simultaneously achieve desirable electrochemical performances and fast production of FESDs. Here, a new scalable coating-extrusion method is developed, utilizing a novel extruded spinneret with tapered apertures to create dual pressure zones.

View Article and Find Full Text PDF

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

Stretchable, Patterned Carbon Nanotube Array Enhanced by TiCT/Graphene for Electromagnetic Interference Shielding.

Nanomaterials (Basel)

March 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.

Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!