Ephaptic Coupling in Ultralow-Power Ion-Gel Nanofiber Artificial Synapses for Enhanced Working Memory.

Adv Mater

Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China.

Published: March 2025

Neuromorphic devices are designed to replicate the energy-efficient information processing advantages found in biological neural networks by emulating the working mechanisms of neurons and synapses. However, most existing neuromorphic devices focus primarily on functionally mimicking biological synapses, with insufficient emphasis on ion transport mechanisms. This limitation makes it challenging to achieve the complexity and connectivity inherent in biological systems, such as ephaptic coupling. Here, an ionic biomimetic synaptic device based on a flexible ion-gel nanofiber network is proposed, which transmits information and enables ephaptic coupling through capacitance formation by ion transport with an extremely low energy consumption of just 6 femtojoules. The hysteretic ion transport behavior endows the device with synaptic-like memory effects, significantly enhancing the performance of the reservoir computing system for classifying the MNIST handwritten digit dataset and demonstrating high efficiency in edge learning. More importantly, the devices in an array establish communication connections, exhibiting global oscillatory behaviors similar to ephaptic coupling in biological neural networks. This connectivity enables the array to perform working memory tasks, paving the way for developing brain-like systems characterized by high complexity and vast connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202419013DOI Listing

Publication Analysis

Top Keywords

ephaptic coupling
16
ion transport
12
ion-gel nanofiber
8
working memory
8
neuromorphic devices
8
biological neural
8
neural networks
8
ephaptic
4
coupling ultralow-power
4
ultralow-power ion-gel
4

Similar Publications

Ephaptic Coupling in Ultralow-Power Ion-Gel Nanofiber Artificial Synapses for Enhanced Working Memory.

Adv Mater

March 2025

Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China.

Neuromorphic devices are designed to replicate the energy-efficient information processing advantages found in biological neural networks by emulating the working mechanisms of neurons and synapses. However, most existing neuromorphic devices focus primarily on functionally mimicking biological synapses, with insufficient emphasis on ion transport mechanisms. This limitation makes it challenging to achieve the complexity and connectivity inherent in biological systems, such as ephaptic coupling.

View Article and Find Full Text PDF

Objective: Neural activity such as theta waves, epileptic spikes and seizures can cross a physical transection using electric fields thus propagating by ephaptic coupling and independently of synaptic transmission. Recruitment of neurons in epilepsy occurs in part due to electric field coupling in addition to synaptic mechanisms. Hence, controlling the local electric field could suppress or cancel the generation of these epileptic events.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).

View Article and Find Full Text PDF

Background: Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity.

Methods And Results: Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!