Coupling Strategies of Multi-Physical Fields in 2D Materials-Based Photodetectors.

Adv Mater

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China.

Published: March 2025

2D materials possess exceptional carrier transport properties and mechanical stability despite their ultrathin nature. In this context, the coupling between polarization fields and photoelectric fields has been proposed to modulate the physical properties of 2D materials, including energy band structure, carrier mobility, as well as the dynamic processes of photoinduced carriers. These strategies have led to significant improvements in the performance, functionality, and integration density of 2D materials -based photodetectors. The present review introduces the coupling of photoelectric field with four fundamental polarization fields, delivered from dielectric, piezoelectric, pyroelectric, and ferroelectric effects, focusing on their synergistic coupling mechanisms, distinctive properties, and technological merits in advanced photodetection applications. More importantly, it sheds light on the new path of material synthesis and novel structure design to improve the efficiency of the coupling strategies in photodetectors. Then, research advances on the synergy of multi-polarization effects and photoelectric effect in the domain of bionic photodetectors are highlighted. Finally, the review outlines the future research perspectives of coupling strategies in 2D materials-based photodetectors and proposes potential solutions to address the challenges issues of this area. This comprehensive overview will guide futural fundamental and applied research that capitalizes on coupling strategies for sensitive and intelligent photodetection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202501833DOI Listing

Publication Analysis

Top Keywords

coupling strategies
16
materials-based photodetectors
8
polarization fields
8
coupling
7
photodetectors
5
strategies multi-physical
4
fields
4
multi-physical fields
4
fields materials-based
4
photodetectors materials
4

Similar Publications

Phosphating CoMoO-Modified Hematite-Based Photoanode Enhances Surface Charge Transfer and Reaction Activity for Efficient Photoelectrochemical Water Oxidation.

Langmuir

March 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.

The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.

View Article and Find Full Text PDF

Background: Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored.

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

Synthetic Biology Approaches to Study Maize Signaling Pathways.

Cold Spring Harb Protoc

March 2025

Department of Biology, Whitman College, Walla Walla, Washington 99362, USA

Synthetic biology approaches merge the tenets of engineering with established biological techniques to answer fundamental questions about living systems and to engineer biological forms and functions. Following the engineering principle of design-build-test-iterate, this review serves as a guide to applying synthetic principles and approaches in maize. We outline strategies for (1) choosing the optimal model organism to serve as a heterologous chassis for maize signaling pathways, (2) designing and building biological parts and devices to express pathway components, (3) choosing an analytical technique to measure pathway function, and (4) optimizing and troubleshooting the designed system.

View Article and Find Full Text PDF

Meta-analyses of the global impact of non-antibiotic feed additives on livestock performance and health.

J Adv Res

March 2025

The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; College of Animal Science and Technology, Northwest A & F University, Yangling 712100, PR China. Electronic address:

Introduction: The impact of non-antibiotic feed additives on livestock performance and health is contingent upon a multitude of variables, including the animal species, dosage and type of feed additives, and duration of oral administration. However, there is a paucity of knowledge regarding the relationship between these factors and the performance of livestock animals.

Objectives: The objective of this study was to conduct a global meta-analysis based on a pool of empirical studies to investigate the effects of dietary additives on growth, production, blood metabolites, immunity, intestinal morphology, and the abundance of gut microbiota in livestock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!