Coordinated variations in leaf and root biogeochemical niches.

New Phytol

Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Published: March 2025

The biogeochemical niche (BN) hypothesis posits that each species has a specific elemental composition. However, the BN of roots and its interaction with leaf BN have largely been neglected until now across diverse environmental conditions. We investigated the relationships between the elemental compositions of leaves and roots, phylogeny, and environmental variables, as well as the connection between leaf and root BN. We analyzed the concentrations of carbon, nitrogen, phosphorus, potassium, calcium, and magnesium in the leaves and roots of 12 394 individuals from 1238 species. Consistent with the BN hypothesis, despite significant differences in elemental concentrations and their ratios between leaves and roots, we observed strong legacy (phylogenetic + species) signals in the species-specific elemental compositions. This finding confirms that the elemental compositions of leaves and roots can contribute to identifying species niches. Our study revealed a higher phylogenetic conservatism for BN in leaves than in roots and provided evidence of a tight association between the species-specific BN of leaves and roots. Our results underscore the broad applicability of the BN hypothesis across diverse species and biomes and demonstrate the critical role of evolutionary legacy in driving coordinated dynamics in both above- and belowground ecological niches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.70042DOI Listing

Publication Analysis

Top Keywords

leaves roots
24
elemental compositions
12
leaf root
8
compositions leaves
8
roots
7
leaves
6
species
5
elemental
5
coordinated variations
4
variations leaf
4

Similar Publications

Zinc is an essential trace element for plant growth and development. Zinc transporters play an important role in regulating zinc homeostasis in plants. In this study, the potato cultivar 'Atlantic' was used as experimental material to analyze the expression characteristics of the StZIP2 gene in different potato tissues under zinc deficiency stress.

View Article and Find Full Text PDF

Root and stem rot, caused by Pythiales (Oomycota), poses a significant threat to chrysanthemum ( spp.) cultivation worldwide. In Korea, previously undocumented rot and blight symptoms were observed on stems, roots, and leaves of (=), a chrysanthemum species with high global production.

View Article and Find Full Text PDF

Unlabelled: Drought is a natural disaster that exerts considerable adverse impacts on the agricultural sector. This study aimed to investigate the cytokinin-mediated carbohydrate accumulation in the aerial parts of the plant and the roots in four-month-old drought-stressed tall fescue ( Schreb.) plants.

View Article and Find Full Text PDF

Identifying Heat Adaptability QTLs and Candidate Genes for Grain Appearance Quality at the Flowering Stage in Rice.

Rice (N Y)

March 2025

Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.

High temperature significantly impacts grain appearance quality, yet few studies have focused on identifying new quantitative trait loci (QTLs)/genes related to these traits under heat stress during the flowering stage in rice. In this study, a natural population of 525 rice accessions was used to identify QTLs and candidate genes associated with grain appearance quality using a Genome-Wide Association Study under heat stress. We identified 25 QTLs associated with grain length (GL), grain width (GW), and grain chalkiness (GC) under heat stress across 10 chromosomes in the three rice populations (full, indica, and japonica).

View Article and Find Full Text PDF

First Report of Associated with Tomato Root Rot Disease in China.

Plant Dis

March 2025

Beijing Academy of Agriculture and Forestry Sciences, Institute of plant protection, No. 9 of ShuGuangHuaYuan ZhongLu, Haidian District, Beijing 100097, China., Beijing, China, 100097;

Tomato (Solanum lycopersicum) is widely grown worldwide, ranking first among vegetable crops. Root diseases of tomatoes can cause serious yield losses. In June 2023 and 2024, tomato root rot symptoms were observed in the greenhouse with 70%-90% incidence approximate number of plants (N=210) in Beizhen City (121°47 ' 30 ''E, 41°35' 45 ''N), Liaoning Province, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!