While investigating fossil fuel alternatives, phase change materials (PCMs) are promising for thermal energy storage (TES) applications because of their high renewable energy storage density, constant phase transition temperature, affordable pricing, non-toxic nature, etc. However, several limitations, including liquid leakage, phase separation, supercooling, low thermal conductivity, and unalterable melting temperature, offer a challenge in their utilization. While numerous studies have addressed these issues, there is no universal solution for PCM challenges. Customized strategies are required to mitigate each drawback. This review paper provides a comprehensive summary of the mitigation techniques and enhancement methods employed and their influence on the thermophysical characteristics of these materials. Strategies to reduce supercooling involve incorporating nucleating agents, seeding, and microencapsulation. Eutectic PCMs with alterable melting temperatures can be designed to enable the use of a specific PCM in various applications. Shape-stabilized PCMs effectively prevent liquid leakage, which utilizes multiple support materials. Additionally, incorporating thickening agents to mitigate phase separation and enhanced heat transfer strategies through various methods, including nanomaterial additives, porous mediums, microencapsulation, and uniform heat transfer, are deeply discussed. The insights provided in this paper are valuable for selecting reliable PCMs and determining appropriate performance improvement methods to achieve optimal thermal performance in PCM-based TES systems. Furthermore, the article also proposes essential directions for the future advancement of PCMs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-36189-7DOI Listing

Publication Analysis

Top Keywords

energy storage
12
mitigation techniques
8
enhancement methods
8
phase change
8
change materials
8
thermal energy
8
liquid leakage
8
phase separation
8
heat transfer
8
phase
5

Similar Publications

Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.

View Article and Find Full Text PDF

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

A Novel Coating-Extrusion Method Enabled, High Energy, Power Density, and Scalable Production in Monolithically Integrated Energy Storage Fibers.

Adv Mater

March 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.

The rise of wearable electronics demands flexible energy storage solutions like flexible fiber energy storage devices (FESDs), known for their flexibility and portability. However, it remains difficult for existing fabrication methods (typically, finite-coating, thermal-drawing, and solution-extrusion) to simultaneously achieve desirable electrochemical performances and fast production of FESDs. Here, a new scalable coating-extrusion method is developed, utilizing a novel extruded spinneret with tapered apertures to create dual pressure zones.

View Article and Find Full Text PDF

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!