Nitrogen-removed organic matters from cyanobacterial decomposition promote the release of nitrogen from lake sediment.

Environ Sci Pollut Res Int

State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, China.

Published: March 2025

Cyanobacterial blooms, which carry a lot of nitrogen (N) and phosphorus (P), have emerged as one of the most severe environmental issues in freshwater ecosystems. However, there are few studies on the effect of organic matters released during cyanobacterial decomposition in promoting N release from lake sediments that remain underexplored. An essential step is to eliminate the impact of the N contributions from cyanobacteria when evaluating sedimentary N release. The response surface methodology (RSM) was developed to optimize the struvite precipitation model, and the results indicated that 1.3 of Mg/N, 1.0 of P/N, and pH 9.5 were the optimum conditions for N removal from cyanobacterial pyrolysis liquid. Following this, calcium phosphate crystallization (at pH 10 and Ca/P = 4.98) removed residual P, and zeolite adsorption (at pH 8 and 10 g/L zeolite dosage) eliminated the remaining N. Ultimately, 99.3% of N was removed with the two methods in cyanobacterial pyrolysis liquid. The cyanobacterial pyrolysis liquid, stripped of N, was found to significantly enhance the release of N from lake sediment under anaerobic conditions, which can then be reutilized by cyanobacteria. These findings reveal that organic matter derived from cyanobacterial decomposition promotes sedimentary N release, creating a feedback loop that sustains cyanobacterial blooms in freshwater ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-36182-0DOI Listing

Publication Analysis

Top Keywords

cyanobacterial decomposition
12
cyanobacterial pyrolysis
12
pyrolysis liquid
12
organic matters
8
cyanobacterial
8
lake sediment
8
cyanobacterial blooms
8
freshwater ecosystems
8
release lake
8
sedimentary release
8

Similar Publications

Nitrogen-removed organic matters from cyanobacterial decomposition promote the release of nitrogen from lake sediment.

Environ Sci Pollut Res Int

March 2025

State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, China.

Cyanobacterial blooms, which carry a lot of nitrogen (N) and phosphorus (P), have emerged as one of the most severe environmental issues in freshwater ecosystems. However, there are few studies on the effect of organic matters released during cyanobacterial decomposition in promoting N release from lake sediments that remain underexplored. An essential step is to eliminate the impact of the N contributions from cyanobacteria when evaluating sedimentary N release.

View Article and Find Full Text PDF

Polycaprolactam microplastics reduce allelopathic potential of Iris pseudacorus via toxic effects on stimulatory bacteria.

Ecotoxicology

February 2025

Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241003, PR China.

Many studies have investigated the toxic effects of microplastics (MPs) ingested by aquatic animals, but the effects of MPs that adhere to the roots of macrophytes require further exploration. Thus, the present study investigated the dose-dependent toxic effects of adding 10-500 mg/kg of polycaprolactam microplastics (PCM) on allelopathic cyanobacterial inhibition by a wetland macrophyte due to the influence on rhizosphere bacteria in a pot trial. First, comparisons of sterilized and unsterilized Iris pseudacorus rhizosphere soil showed that the unsterilized soil could enhance the root activity and allelopathic inhibition of Microcystis aeruginosa cyanobacteria.

View Article and Find Full Text PDF

The immobilization of phosphorus (P) in sediments plays a pivotal role in managing lake eutrophication over the long term. Therefore, key factors that may cause uncertainties in P fixation are of increasing interest to researchers. Calcium‑aluminum composites (CA) can passivate sediment P well; however, the effect of cyanobacterial bloom decline on their sediment P remediation remains unclear.

View Article and Find Full Text PDF

Nutrient regeneration patterns for initiating and maintaining algae blooms-a case study of in Lake Taihu.

Chemosphere

October 2024

National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, PR China. Electronic address:

In order to clarify the nitrogen (N) and phosphorus (P) regeneration patterns and internal mechanism for initiating and maintaining algal blooms in Lake Taihu, samples (including surface water and sediment) from 8 sites in Lake Taihu were collected for nine times from May 2010 to April 2011, and analyzed for total and labile organic matter, P fractionation and sorption behaviors, extracellular enzymatic activities (EEA), dehydrogenase activity, the respiratory electron transport system activity, and iron in sediment, EEA, N and P species and chlorophyll a (Chl. a) in surface water, as well as N and P species in interstitial water. In Lake Taihu, although severe blooms occurred in both Meiliang Bay and Zhushan Bay, the nutrient regeneration patterns stimulating the initiation and maintenance of algae blooms in these two bays were different.

View Article and Find Full Text PDF

Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!