Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes.

Light Sci Appl

Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.

Published: March 2025

Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites. The highly polar 2-F-TPPO incorporated perovskite films demonstrated enhanced photoluminescence quantum yield (PLQY), suppressed defects, and improved crystallinity. When implemented as active layers in PeLEDs, an external quantum efficiency (EQE) of 12.6% with an emission wavelength of 640 nm is achieved, which was 6 times higher compared to the previously reported most efficient vacuum-deposited red PeLEDs (EQE below 2%). Our findings lay the foundations for the further exploration of high-performance vacuum-deposited PeLEDs toward full-color perovskite displays.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41377-025-01740-1DOI Listing

Publication Analysis

Top Keywords

efficient vacuum-deposited
8
perovskite light-emitting
8
light-emitting diodes
8
vacuum-deposited
6
peleds
5
fluorine-modified passivator
4
passivator efficient
4
vacuum-deposited pure-red
4
perovskite
4
pure-red perovskite
4

Similar Publications

Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes.

Light Sci Appl

March 2025

Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.

Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites.

View Article and Find Full Text PDF

Unprecedented short-circuit current density and efficiency of vacuum-deposited organic solar cells based on 8H-thieno[2',3':4,5]thieno[3,2-b] thieno[2,3-d]pyrrole.

Sci Bull (Beijing)

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.

Despite the many advantages for industrial mass production, vacuum-deposited organic solar cells (OSCs) suffer from low efficiency, primarily due to the limited molecular library of small-molecule donor and acceptor materials, which remains a significant challenge. Herein, two donor-acceptor-acceptor (D-A-A)-configured small-molecule donors, named TTBTDC and TTBTDC-F were synthesized, using 8H-thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]pyrrole (TTP) as a new fused-ring donor unit. Benefiting from the strong electron-donating ability of the TTP moiety and the adoption of the D-A-A molecular configuration, these molecules exhibited strong visible and near-infrared absorption as well as deep-lying highest occupied molecular orbital (HOMO) energy levels.

View Article and Find Full Text PDF

The multiple resonance thermally activated delayed fluorescence (MR-TADF) device has drawn great attention due to their outstanding efficiency and color purity. However, the efficiency of solution-processed MR-TADF devices is still far behind their vacuum-deposited counterparts, due to the uncontrollable horizontal emitting dipole orientation for emitters during solution process, resulting in low light out-coupling efficiency. Here, we proposed a new strategy namely electrostatic interaction between a dendritic host with high positive electrostatic potential (ESP) and dendritic emitter with multiple negative ESP sites, which could induce high horizontal dipole ratio (Θ) up to 83.

View Article and Find Full Text PDF

Selectively Self-Aligned Sol-Gel Copper Oxide for Large-Area Multi-Valued Logic Devices.

Small

December 2024

Department of Intelligence Semiconductor and Engineering, Ajou University, Suwon, Republic of Korea.

Rapid expansion of digital information density has led to a growing demand for multi-valued logic (MVL) systems, which aim to minimize energy and time consumption for computations. Heterojunction transistors represent a class of device architectures for MVL circuits; however, partially layered structures can be realized only for vacuum-deposited organic and transferred 2D materials due to the constraints of patterning processes. In this study, a novel CuO/IGZO heterojunction-based ternary inverter is presented via a sol-gel technique and direct patterning process using a self-assembled monolayer (SAM).

View Article and Find Full Text PDF

Harnessing of Cooperative Cu⋅⋅⋅H Interactions for Luminescent Low-Coordinate Copper(I) Complexes towards Stable OLEDs.

Angew Chem Int Ed Engl

February 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China.

Although two-coordinate Cu(I) complexes are highly promising low-cost emitters for organic light-emitting diodes (OLEDs), the exposed metal center in the linear coordination geometry makes them suffer from poor stability. Herein, we describe a strategy to develop stable carbene-Cu-amide complexes through installing intramolecular noncovalent Cu⋅⋅⋅H interactions. The employment of 13H-dibenzo[a,i]carbazole (DBC) as the amide ligand leads to short Cu⋅⋅⋅H distances in addition to the Cu-N coordination bond.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!