Pear (Pyrus L.) is a significant commercial fruit globally, with diverse species exhibiting variations in their flowering periods due to environmental factors. CONSTANS-like (COL) genes, known from previous studies in Arabidopsis, are key regulators of flowering time by sensing photoperiod. However, the evolutionary history and functions of COL genes in different pear species remain unclear. In this study, we identified a total of 79 COL genes in different pear species, including 12 COL genes in Pyrus bretschneideri 'DangshanSuli', 9 in Pyrus ussuriensis × hybrid 'Zhongai 1', 11 in Pyrus communis 'Bartlett', 13 in Pyrus betulifolia, 18 in Pyrus pyrifolia 'Cuiguan', 16 in Pyrus pyrifolia 'Nijisseiki'. Analysis of gene structure, phylogenetic tree, and multiple sequences provided valuable insights into the fundamental understanding of COL genes in pear. The impact of selection pressure on the PbrCOLs in Chinese white pear was assessed using Ka/Ks, revealing that the evolution rate of PbrCOLs was influenced by purification selection factors. The study also revealed different tissue-specific expression patterns of PbrCOLs under varying light quality. Real-time quantitative PCR revealed that under natural light conditions, the expression patterns of PbrCOL2, PbrCOL3, and PbrCOL4 are similar to previous studies on CONSTANS gene in Arabidopsis, with increased expression levels during the day and decreased levels at night. However, PbrCOL1, PbrCOL6, and PbrCOL9 exhibit different expression patterns, with decreased expression levels both during the day and at night. After red light treatment, high expression of PbrCOL3 and PbrCOL4 was observed at night, while the expression patterns of the other four genes did not show significant changes. Following blue light treatment, the expression peaks of PbrCOL1 and PbrCOL6 occurred during the night, showing opposite expression patterns compared to the study in Arabidopsis. The overexpression of PbrCOL3 significantly increase the chlorophyll content in pear seedlings, and its expression significantly affected the expression of other key flowering-related genes. Also, overexpression of PbrCOL3 resulted in a late-flowering phenotype in Arabidopsis. These findings indicate diverse responsive mechanisms and functions of PbrCOL genes on flowering time in pear. In conclusion, this study established a foundation for a deeper understanding of the specific roles of PbrCOLs in regulating the reproductive development of pear, particularly in the context of the photoperiodic flowering process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892235 | PMC |
http://dx.doi.org/10.1186/s12870-025-06325-z | DOI Listing |
Development
March 2025
Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, 36824, México.
After fertilization in animals, maternal mRNAs and proteins regulate development until the onset of zygotic transcription. In plants, the extent of maternal regulation of early embryo development has been less clear: two hybrid combinations of rice zygotes had a strong maternal transcript bias, while Arabidopsis Col/Cvi and Col/Ler hybrid embryos displayed symmetric and asymmetric parental genome activation, respectively. Here we explore parent-of-origin transcriptome behavior in the Arabidopsis Col/Tsu hybrid, which was previously shown to display maternal effects for embryo defective mutants indistinguishable from those of the reference ecotype Col.
View Article and Find Full Text PDFBMC Plant Biol
March 2025
Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
Pear (Pyrus L.) is a significant commercial fruit globally, with diverse species exhibiting variations in their flowering periods due to environmental factors. CONSTANS-like (COL) genes, known from previous studies in Arabidopsis, are key regulators of flowering time by sensing photoperiod.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2025
Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Wound healing includes four consecutive and overlapping stages of hemostasis, inflammation, proliferation, and remodeling. Factors such as aging, infection, and chronic diseases can lead to chronic wounds and delayed healing. Low-temperature cold plasma (LTCP) is an emerging physical therapy for wound healing, characterized by its safety, environmental friendliness, and ease of operation.
View Article and Find Full Text PDFPlant J
March 2025
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina.
Root developmental plasticity relies on transcriptional reprogramming, which largely depends on the activity of transcription factors (TFs). NF-YA2 and NF-YA10 (nuclear factor A2 and A10) are downregulated by the specific miRNA isoform miR169defg. Here, we analyzed the role of the Arabidopsis thaliana TF NF-YA10 in the regulation of lateral root (LR) development.
View Article and Find Full Text PDFSci Total Environ
March 2025
Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
The increasing use of antidepressants, especially fluoxetine (FLX), has resulted in their presence in aquatic environments due to wastewater discharges from municipal, industrial, and hospital sources. Simultaneously, microplastics (MPs) have been extensively studied in short-term (acute) exposures, showing adverse effects such as oxidative stress, behavioral alterations and neurotoxicity. However, the embryotoxic and teratogenic effects of these compounds, as well as their impacts on the survival, development, morphology, behavior, and reproduction of fish embryos in aquatic ecosystems, remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!