Background: Predicting and studying essential proteins not only helps to understand the fundamental requirements for cell survival and growth regulation mechanisms but also deepens our understanding of disease mechanisms and drives drug development. Existing methods for identifying essential proteins primarily focus on PPI networks within a single species, without fully exploiting interspecies homologous relationships. These homologous relationships connect proteins from different species, forming multilayer PPI networks. Some methods only construct interlayer edges based on homologous relationships between two species, without incorporating appropriate biological attributes to assess the biological significance of these edges. Furthermore, homologous proteins are often highly conserved across multiple species, and expanding homologous relationships to more species allows for a more accurate assessment of interlayer edge importance.

Results: To address these issues, we propose a novel model, MLPR, which constructs a multilayer PPI network based on homologous proteins and integrates multiple PageRank algorithms to identify essential proteins. This study combines homologous protein data from three species to construct interlayer transition matrices and assigns weights to interlayer edges by integrating the biological attributes of homologous proteins and cross-species GO annotations. The MLPR model uses multiple PageRank methods to comprehensively consider homologous relationships across species and designs three key parameters to find the optimal combination that balances random walks within layers, global jumps, interlayer biases, and interspecies homologous relationships.

Conclusions: Experimental results show that MLPR outperforms other state-of-the-art methods in terms of performance. Ablation experiments further validate that integrating homologous relationships across three species effectively enhances the overall performance of MLPR and demonstrates the advantages of the multiple PageRank model in identifying essential proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-025-06093-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892321PMC

Publication Analysis

Top Keywords

homologous relationships
24
essential proteins
20
homologous proteins
16
multiple pagerank
16
multilayer ppi
12
ppi networks
12
homologous
12
based homologous
12
relationships species
12
proteins
10

Similar Publications

Introduction: Cross-education is an established yet not fully understood phenomenon involving interhemispheric processes within the corpus callosum (CC) that result in strength gains in the untraining limb following training of the contralateral homologous muscles. There is a substantial lack of cross-education studies employing lesional models. This study employed the model of multiple sclerosis, a condition typically featuring demyelinating callosal lesions, to pinpoint CC subregions that mediate cross-education, potentially fostering the mechanistic understanding of the interlimb transfer.

View Article and Find Full Text PDF

Introduction: Nus-dependent Mexican phages (mEp) were previously isolated from clinical samples of human feces. Approximately 50% corresponded to non-lambdoid temperate phages integrating a single immunity group, namely immunity I (mEp), and these were as prevalent as the lambdoid phages identified in such collection.

Methods: In this work, we present the structural and functional characterization of six representative mEp phages (mEp010, mEp013, mEp021, mEp044, mEp515, and mEp554).

View Article and Find Full Text PDF

In previous studies, preconception exposure to perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) reduced the reproductive capacity and altered the development of the offspring of . However, the specific pathways involved in these observations were not determined. Thus, we investigated how preconception exposure to PFOS (40 μM) and PFBS (2000 μM) affected embryonic nutrient loading and offspring development.

View Article and Find Full Text PDF

, a versatile and antibiotic-resistant gram-negative pathogen, poses a critical threat to both immunocompromised and immunocompetent populations, underscoring the urgent need for new therapeutic targets. This study applies an extensive subtractive proteomics approach to identify viable drug targets within the core proteome of , analyzing a total of 5563 proteins. Through a rigorous, multi-stage process, we excluded human homologs, identified essential proteins, mapped functional pathways, determined subcellular localization, and assessed virulence and resistance factors.

View Article and Find Full Text PDF

Background: DNA repair mechanisms, particularly RAD51-mediated homologous recombination repair, play a crucial role in breast cancer development, with the rs1801320 (135G > C) polymorphism showing conflicting associations across studies. This meta-analysis aimed to assess the relationship between RAD51 rs1801320 polymorphism and breast cancer susceptibility.

Method: We systematically searched PubMed and Web of Science databases through August 15, 2024, and included 16 case-control studies comprising 4743 breast cancer cases and 4448 controls, analyzing various genetic models using R Studio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!