Gold nanorods (GNRs) are valued for their tunable surface plasmon resonance (SPR) and unique optical properties, but precise control over their size and shape remains challenging. Current synthesis techniques often yield polydisperse samples and require high concentrations of cytotoxic surfactants, limiting their biomedical applications. In this study, we introduce a novel electrochemical synthesis method that offers precise control of GNR characteristics by leveraging open circuit potential (OCP) data from colloidal synthesis. This approach involves the electrochemical growth of gold nano-seeds immobilized on fluorine-doped tin oxide (FTO) substrates, using physical vapor deposition (PVD) followed by thermal annealing to generate the Au seeds. This eliminates the need for seed solutions and significantly reduces surfactant usage. By optimizing electrochemical parameters, we produce uniform GNRs up to 700 nm in length, surpassing the typical 100 nm size from traditional methods. These larger GNRs exhibit superior optical and thermal properties, making them ideal for biomedical imaging, photothermal therapy, and applications requiring deeper tissue penetration. Their increased size also enhances stability, biosensing sensitivity, and circulation time, making them suitable for drug delivery and catalysis. This scalable method improves nanorod growth understanding while addressing cytotoxicity concerns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891317 | PMC |
http://dx.doi.org/10.1038/s41598-025-92926-5 | DOI Listing |
Small Methods
March 2025
Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
Decentralized molecular detection of pathogens remains an important goal for public health. Although polymerase chain reaction (PCR) remains the gold-standard molecular detection method, thermocycling using Peltier heaters presents challenges in decentralized settings. Recent work has demonstrated plasmonic PCR, where nanomaterials on a surface or nanoparticles in solution heat upon stimulation by light, as a promising method for rapid thermocycling.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China.
Radiotherapy (RT) effectiveness is limited by low DNA damage in tumor cells, surrounding tissue harm, and tumor radioresistance with active DNA repair. Herein, we have engineered a two-dimensional nanomaterial consisting of MXene nanosheets at its core, coated with gold nanorods and a cisplatin shell, and further modified with polyvinyl alcohol, referred to as APMP. The APMP exploits its distinctive electronic properties and photothermal effects to augment radiosensitivity and impede DNA damage repair mechanisms.
View Article and Find Full Text PDFNat Commun
March 2025
State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments.
View Article and Find Full Text PDFFood Chem
March 2025
State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China. Electronic address:
An innovative light scattering immunoassay was developed using an AuNPs etching strategy. Three types of anisotropic gold nanoparticles, including gold nanocubes, nanorods, and nanoflowers with distinct morphologies, were utilized to investigate how these morphological differences affect the sensitivity of light scattering signal transduction. Based on theoretical insights into light scattering and electromagnetic fields, gold nanocubes were identified as the optimal probes for enhancing light scattering signal transduction and were employed to construct an immunoassay for detecting staphylococcal enterotoxin A (SEA).
View Article and Find Full Text PDFJ Environ Manage
March 2025
Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia; Department of Environment Johor, Pusat Perdagangan Danga Utama, Wisma Alam Sekitar, 46, Jalan Pertama, 81300, Johor Bahru, Johor, Malaysia.
Plastic is a widely used material across various industries, including construction, packaging, healthcare, and automotive, among others. Global plastic production was estimated at 311 million tonnes in 2014 and is expected to double within two decades, continuing to rise towards 2050. As plastic pollution poses significant environmental and health risks, effective recycling and upcycling strategies are crucial for sustainable waste management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!