Anthocyanin accumulation plays a crucial role in enhancing Lilium petal colouration; however, breeding efforts are hindered by our lack of understanding of the complex molecular mechanism behind the pigment's synthesis. This study explores the potential role of the WRKY family gene WRKY75 in anthocyanin synthesis in lilies. Contrary to the inhibitory effect observed in Arabidopsis thaliana, both transient silencing and overexpression analyses of LvWRKY75 indicate that the gene positively regulates anthocyanin synthesis in lilies. The overexpression of LvWRKY75 was found to cause a significant upregulation of structural genes pivotal for anthocyanin biosynthesis in lilies, including Lv3GT, LvDFR and LvANS, as well as the anthocyanin synthesis regulatory gene LvMYB5. Further in-depth analyses, including yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assays, demonstrated that LvWRKY75 binds to the promoter of LvMYB5, enhancing its transcriptional activity. In turn, the increased expression of LvMYB5 upregulates the transcription of downstream genes such as LvDFR and LvANS. In summary, this study provides a deeper understanding of the mechanisms behind anthocyanin synthesis in lilies, contributing to improving molecular breeding strategies for enhancing the flowers' ornamental value and commercial appeal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.70143 | DOI Listing |
Heliyon
February 2025
INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea.
A by-product is a secondary substance unintentionally produced during manufacturing and can be repurposed through recycling. In particular, by-products generated from the processing of natural materials are valuable because of their bioactive compound content, such as polyphenols and anthocyanins. Obesity is a global health issue, and medicines for obesity have side effects, such as insomnia and headaches.
View Article and Find Full Text PDFEnviron Res
March 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China. Electronic address:
With increasing environmental pollution and resource wastage, utilizing waste for high-value applications has become crucial. This study explores the preparation of carbon dots (CDs) from blue honeysuckle leaves and their potential in enhancing plant photosynthesis. CDs derived from these leaves have a particle size of ∼2.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits.
View Article and Find Full Text PDFJ Exp Bot
March 2025
University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.
In land plants, one of the processes vital to cope with environmental changes is the accumulation of photoprotective flavonoids such as flavonols and anthocyanins. The inactivation of SUCROSE NON-FERMENTING1 RELATED PROTEIN KINASE1 (SnRK1), which acts in a chloroplast-derived sugar signalling pathway, permits the activation of flavonoid biosynthesis in high-light. The present study provides genetic evidence that SnRK1 acts upstream of PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), encoding a crucial transcription factor that activates the anthocyanin branch of flavonoid biosynthesis during high-light acclimation.
View Article and Find Full Text PDFPhysiol Plant
March 2025
Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
Anthocyanin accumulation plays a crucial role in enhancing Lilium petal colouration; however, breeding efforts are hindered by our lack of understanding of the complex molecular mechanism behind the pigment's synthesis. This study explores the potential role of the WRKY family gene WRKY75 in anthocyanin synthesis in lilies. Contrary to the inhibitory effect observed in Arabidopsis thaliana, both transient silencing and overexpression analyses of LvWRKY75 indicate that the gene positively regulates anthocyanin synthesis in lilies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!