Developing metal-free catalysts is critical to addressing the issues of susceptibility to poisoning and deficient durability in the electrocatalysis of metal-based materials for CO2 reduction reaction (CO2RR). Herein, N-doped carbon nanoparticles (NCs) with a specific ratio of graphitic/pyrrolic N, high specific surface area, and abundant nanopores are synthesized by pyrolyzing a Cu and Zn co-coordinated polymer with bis(imino)-pyridine ligands. Results demonstrate that precise co-incorporation of Cu and Zn in the precursor effectively modulates the N doping species and ratios of NCs, as well as the pore structure, resulting in significantly distinct CO2RR behaviors. The NCs synthesized by the precursor with the ratio of Zn and Cu ions (1:4), featuring graphitic-N and pyrrolic-N in the ratio of 2:1 and high specific surface area (896.8 m2 g-1), exhibit a low onset potential of -0.4 VRHE, an exceptional CO Faradaic efficiency of 96.1%, and a power density of 0.8 mW cm-2 in a Zn-CO2 battery. Theory calculations reveal that regulating the graphitic/pyrrolic N ratio can redistribute the localized atoms' charge density, which enhances the adsorption of intermediate COOH* and mobilizes multiple active atomic sites favoring CO2RR. The discovery in this work provides a new understanding for the design of advanced metal-free CO2RR electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202500152DOI Listing

Publication Analysis

Top Keywords

co2 reduction
8
high specific
8
specific surface
8
surface area
8
modulation engineering
4
engineering graphitic/pyrrolic
4
graphitic/pyrrolic nitrogen
4
nitrogen co-doped
4
co-doped porous
4
porous carbon-based
4

Similar Publications

Despite decades of emission control measures aimed at improving air quality, Los Angeles (LA) continues to experience severe ozone pollution during the summertime. We incorporate cooking volatile organic compound (VOC) emissions in a chemical transport model and evaluate it against observations in order to improve the model representation of the present-day ozone chemical regime in LA. Using this updated model, we investigate the impact of adopting zero-emission vehicles (ZEVs) on ozone pollution with increased confidence.

View Article and Find Full Text PDF

The performance of the electrocatalytic CO reduction reaction (CORR) is highly dependent on the microenvironment around the cathode. Despite efforts to optimize the microenvironment by modifying nanostructured catalysts or microporous gas diffusion electrodes, their inherent disorder presents a significant challenge to understanding how interfacial structure arrangement within the electrode governs the microenvironment for CORR. This knowledge gap limits fundamental understanding of CORR while also hindering efforts to enhance CORR selectivity and activity.

View Article and Find Full Text PDF

This research determines the potential impact of reducing food waste on future energy consumption and pollutant emissions. The study uses system dynamics modelling to simulate the complex link between population, food demand, food waste output and their interactions with energy consumption in the food system and carbon dioxide (CO) emissions. Scenarios are developed by considering two elements: a reduction in food waste and an increase in energy output.

View Article and Find Full Text PDF

Non-copper-based Catalysts for CO2 Electroreduction to Multi-carbon Compounds.

ChemSusChem

March 2025

Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming Rd., Xiamen 361005, China, 361005, Xiamen, Fujian, China, CHINA.

Renewable energy has made significant strides, with the cost of clean electricity plummeting, making the use of renewable electricity for electrocatalytic CO2 reduction to synthesize high-value chemicals and fuels more economically attractive. Notably, certain non-copper-based electrocatalysts have shown remarkable selectivity for C2+ products at low overpotentials, even enabling the production of multi-carbon molecules that are undetectable on copper-based electrodes. This breakthrough opens up new avenues for research into non-copper catalysts.

View Article and Find Full Text PDF

The conversion of carbon dioxide into fuels and fine chemicals is a highly desirable route for mitigating flue gas emissions. However, achieving selectivity toward olefins remains challenging and typically requires high temperatures and pressures. Herein, we address this challenge using 12 nm copper nanoparticles supported on FeOx micro-rods, which promote the selective hydrogenation of CO to light olefins (C-C) under atmospheric pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!