Optimizing fermentation media to accurately reflect the colonic environment remains a challenge in developing in vitro models that simulate the human colon. This study aimed to develop a fermentation medium, Nutritive Colonic (NutriCol), which mimics colonic chyme with fiber content reflective of a typical Western diet and compared to the widely used MacFarlane medium. MacFarlane/NutriCol media contained the following fiber (g/L): potato starch (5/0.1), pectin (2/5.6), xylan (2/4.4), arabinogalactan (2/1.8), guar gum (1/0.4), glucomannan (0/0.8), and inulin (1/0.2). The performance of NutriCol was evaluated using two in vitro models: PolyFermS, which simulates the human proximal colon, and M-ARCOL, which mimics both the lumen and mucosa of the human colon. In the PolyFermS model, findings revealed that NutriCol maintained microbiota α-diversity closer to the donor fecal samples and significantly higher than MacFarlane (Shannon's p ≤ 0.01; Simpson's p ≤ 0.001). In contrast, no significant differences in α-diversity were observed between NutriCol and MacFarlane in the M-ARCOL model, likely due to differences in model design and donor microbiome composition. Microbial community structure, assessed by Bray-Curtis distance and A Permutational multivariate analysis of variance (PERMANOVA), revealed significant variations between the two media in both models (PolyFermS: p = 0.02; M-ARCOL: p = 0.01). Additionally, NutriCol demonstrated a higher capacity to cultivate gut microbes, with increased ASV numbers compared to MacFarlane across PolyFermS and M-ARCOL. SCFAs production was influenced by media composition, individual microbiome structure, and the colonic model used. In the M-ARCOL, NutriCol significantly increased acetate (p = 0.0006) and butyrate (p = 0.02) levels compared to MacFarlane. While a similar trend was observed with the PolyFermS, the differences were not statistically significant (p > 0.05). This increase is attributed to the enrichment of SCFA-producing bacteria, such as Butyricicoccus, Lachnospira, Oscillospiraceae UCG-003, Clostridium butyricum, and Lachnospiraceae NK4A136-group. Additionally, NutriCol generated lower levels of intestinal gases (H, O, CO, and CH) than MacFarlane in the M-ARCOL model. In conclusion, our study demonstrates that NutriCol, a growth medium specifically designed to replicate the typical fiber content of a Western diet, supports gut microbiota diversity and structure better than the established MacFarlane medium. NutriCol's impact was model- and donor-dependent, enhancing microbiota diversity in PolyFermS, while promoting SCFA production and reducing gas levels in M-ARCOL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.115993 | DOI Listing |
Future Microbiol
March 2025
Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Technology Center for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei, Anhui, China.
Aims: This study aims to investigate how different wound microenvironmental factors (temperature, pH, and osmotic pressure) influence the autofluorescence of Staphylococcus aureus ( and its underlying molecular mechanisms, specifically focusing on the porphobilinogen synthase gene gene expression.
Methods: We measured the average fluorescence intensity of colonies under varying conditions of pH (3, 5, 7, 9, 11), temperature (25°C, 31°C, 37°C, 43°C), and osmotic pressure (0.9%, 1.
Small Methods
March 2025
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, P. R. China.
Elucidating in vivo lipolysis is crucial for clarifying the underlying mechanisms and in vivo fates of lipid-based nanocarriers, which are essential oral drug delivery carriers. Current mainstream methodologies use various in vitro digestion models to predict the in vivo performance of lipid formulations; however, their accuracy is often impeded by the complicated environment of the gastrointestinal tract. Although fluorescence labeling with conventional probes partly reveals the in vivo translocation of lipid nanocarriers, it fails to elucidate the lipolysis process because of poor signal discrimination among nanocarriers, free probes, and mixed micelles (lipolysis end-products).
View Article and Find Full Text PDFFront Immunol
March 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection.
Methods: The gene set variation analysis (GSVA) algorithm was employed for the calculation of NET score, while the consensus clustering algorithm was utilized to identify molecular subtypes.
Front Pharmacol
February 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Background: Ferroptosis is an intracellular iron-dependent cell death that is distinct from apoptosis, necrosis, and autophagy. Increasing evidence indicated that ferroptosis plays a crucial role in suppressing tumors, thus providing new opportunities for cancer therapy. The drug cepharanthine, commonly used to treat leukopenia, has been discovered to function as an anticancer agent to multiple types of cancer via diverse mechanisms.
View Article and Find Full Text PDFInt J Nanomedicine
March 2025
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
Objective: Photodynamic therapy (PDT) is a promising strategy with significant clinical application potential for tumor treatment. However, the tumor hypoxia and limited efficacy against tumor metastasis present significant limitations in the clinical application of PDT. To alleviate tumor hypoxia for PDT against tumor growth and metastasis, we developed a self-oxygenated immunoliposome by encapsulating the catalase (CAT) within the liposome cavity and loading the photosensitizer chlorin e6 (Ce6) and immunoadjuvant MPLA in the lipid bilayer of the immunoliposome (CAT@LP-Ce6-A).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!