Western diet-based NutriCol medium: A high-pectin, low-inulin culture medium promoted gut microbiota stability and diversity in PolyFermS and M-ARCOL continuous in vitro models.

Food Res Int

NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Published: April 2025

Optimizing fermentation media to accurately reflect the colonic environment remains a challenge in developing in vitro models that simulate the human colon. This study aimed to develop a fermentation medium, Nutritive Colonic (NutriCol), which mimics colonic chyme with fiber content reflective of a typical Western diet and compared to the widely used MacFarlane medium. MacFarlane/NutriCol media contained the following fiber (g/L): potato starch (5/0.1), pectin (2/5.6), xylan (2/4.4), arabinogalactan (2/1.8), guar gum (1/0.4), glucomannan (0/0.8), and inulin (1/0.2). The performance of NutriCol was evaluated using two in vitro models: PolyFermS, which simulates the human proximal colon, and M-ARCOL, which mimics both the lumen and mucosa of the human colon. In the PolyFermS model, findings revealed that NutriCol maintained microbiota α-diversity closer to the donor fecal samples and significantly higher than MacFarlane (Shannon's p ≤ 0.01; Simpson's p ≤ 0.001). In contrast, no significant differences in α-diversity were observed between NutriCol and MacFarlane in the M-ARCOL model, likely due to differences in model design and donor microbiome composition. Microbial community structure, assessed by Bray-Curtis distance and A Permutational multivariate analysis of variance (PERMANOVA), revealed significant variations between the two media in both models (PolyFermS: p = 0.02; M-ARCOL: p = 0.01). Additionally, NutriCol demonstrated a higher capacity to cultivate gut microbes, with increased ASV numbers compared to MacFarlane across PolyFermS and M-ARCOL. SCFAs production was influenced by media composition, individual microbiome structure, and the colonic model used. In the M-ARCOL, NutriCol significantly increased acetate (p = 0.0006) and butyrate (p = 0.02) levels compared to MacFarlane. While a similar trend was observed with the PolyFermS, the differences were not statistically significant (p > 0.05). This increase is attributed to the enrichment of SCFA-producing bacteria, such as Butyricicoccus, Lachnospira, Oscillospiraceae UCG-003, Clostridium butyricum, and Lachnospiraceae NK4A136-group. Additionally, NutriCol generated lower levels of intestinal gases (H, O, CO, and CH) than MacFarlane in the M-ARCOL model. In conclusion, our study demonstrates that NutriCol, a growth medium specifically designed to replicate the typical fiber content of a Western diet, supports gut microbiota diversity and structure better than the established MacFarlane medium. NutriCol's impact was model- and donor-dependent, enhancing microbiota diversity in PolyFermS, while promoting SCFA production and reducing gas levels in M-ARCOL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2025.115993DOI Listing

Publication Analysis

Top Keywords

vitro models
12
compared macfarlane
12
nutricol
9
gut microbiota
8
diversity polyferms
8
m-arcol
8
polyferms m-arcol
8
human colon
8
fiber content
8
western diet
8

Similar Publications

Modelling the effects of temperature, pH and osmotic shifts on the autofluorescence of in vitro.

Future Microbiol

March 2025

Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Technology Center for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei, Anhui, China.

Aims: This study aims to investigate how different wound microenvironmental factors (temperature, pH, and osmotic pressure) influence the autofluorescence of Staphylococcus aureus ( and its underlying molecular mechanisms, specifically focusing on the porphobilinogen synthase gene gene expression.

Methods: We measured the average fluorescence intensity of colonies under varying conditions of pH (3, 5, 7, 9, 11), temperature (25°C, 31°C, 37°C, 43°C), and osmotic pressure (0.9%, 1.

View Article and Find Full Text PDF

Tracking In Vivo Lipolysis of Lipid Nanocarriers Using NIR-II Polarity-Sensitive Fluorescent Probes.

Small Methods

March 2025

School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, P. R. China.

Elucidating in vivo lipolysis is crucial for clarifying the underlying mechanisms and in vivo fates of lipid-based nanocarriers, which are essential oral drug delivery carriers. Current mainstream methodologies use various in vitro digestion models to predict the in vivo performance of lipid formulations; however, their accuracy is often impeded by the complicated environment of the gastrointestinal tract. Although fluorescence labeling with conventional probes partly reveals the in vivo translocation of lipid nanocarriers, it fails to elucidate the lipolysis process because of poor signal discrimination among nanocarriers, free probes, and mixed micelles (lipolysis end-products).

View Article and Find Full Text PDF

Integrated multiomics analysis and machine learning refine neutrophil extracellular trap-related molecular subtypes and prognostic models for acute myeloid leukemia.

Front Immunol

March 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection.

Methods: The gene set variation analysis (GSVA) algorithm was employed for the calculation of NET score, while the consensus clustering algorithm was utilized to identify molecular subtypes.

View Article and Find Full Text PDF

Cepharanthine hydrochloride: a novel ferroptosis-inducing agent for prostate cancer treatment.

Front Pharmacol

February 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Background: Ferroptosis is an intracellular iron-dependent cell death that is distinct from apoptosis, necrosis, and autophagy. Increasing evidence indicated that ferroptosis plays a crucial role in suppressing tumors, thus providing new opportunities for cancer therapy. The drug cepharanthine, commonly used to treat leukopenia, has been discovered to function as an anticancer agent to multiple types of cancer via diverse mechanisms.

View Article and Find Full Text PDF

Biomimetic Self-Oxygenated Immunoliposome for Cancer-Targeted Photodynamic Immunotherapy.

Int J Nanomedicine

March 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.

Objective: Photodynamic therapy (PDT) is a promising strategy with significant clinical application potential for tumor treatment. However, the tumor hypoxia and limited efficacy against tumor metastasis present significant limitations in the clinical application of PDT. To alleviate tumor hypoxia for PDT against tumor growth and metastasis, we developed a self-oxygenated immunoliposome by encapsulating the catalase (CAT) within the liposome cavity and loading the photosensitizer chlorin e6 (Ce6) and immunoadjuvant MPLA in the lipid bilayer of the immunoliposome (CAT@LP-Ce6-A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!