Abscisic acid (ABA) is a key phytohormone that regulates multiple biological processes in plants, including seed germination, seedling growth, and abiotic stress response. ABA enhances drought tolerance by promoting stomatal closure, thereby improving crop productivity under unfavorable stress conditions. Extensive research efforts have focused on understanding ABA signaling more clearly for its potential application in agriculture. The accumulation and stability of signaling components involved in the efficient transduction of downstream ABA signaling are affected by both transcriptional regulation and post-translational modifications. Ubiquitination is a representative post-translational modification that regulates protein stability, and E3 ubiquitin ligase is a key enzyme that determines target substrates for ubiquitination. To date, many E3 ligases functioning as a monomeric form such as RING-, HECT- and Ubox-types have been known to participate in the ABA signaling process. In this review, we summarize the current understanding of ABA-related monomeric E3 ligases, their regulation, and mode of action in Arabidopsis, which will help develop a detailed and integrated understanding of the ABA signaling process in Arabidopsis.
Download full-text PDF |
Source |
---|
Physiol Mol Biol Plants
February 2025
Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India.
Unlabelled: (soybean) is a highly protein-rich legume that also contains oils and vitamins. Unfortunately, soybean faces many biotic and abiotic stresses including heat, drought, pests, wounds, infections, and salinity, which limits the crop productivity. Among these, mechanical wounding (MW) causes significant harm to plants, creates a passage for invading pathogens, and disrupts plant metabolism.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:
MADS-box genes play important roles in plant development, especially flowering and fruiting. In this study, we identified 54 type I and 69 type II MADS-box genes from the apple reference genome 'GDDH13'. The type II MADS-box genes were further divided into 12 closely related subgroups, each exhibiting similar gene structures and conserved domains.
View Article and Find Full Text PDFMol Plant Pathol
March 2025
College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu, China.
Growth, development and defence responses of plants are governed through signalling networks that connect inputs from nutrient status, hormone cues and environmental signals. Plant hormones as endogenous signals are essential for modulating plant defence responses and developmental processes. Ethylene (ET), a gaseous hormone, is widely established as a regulator of these processes.
View Article and Find Full Text PDFBMB Rep
March 2025
Department of Systems Biology and Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
Abscisic acid (ABA) is a key phytohormone that regulates multiple biological processes in plants, including seed germination, seedling growth, and abiotic stress response. ABA enhances drought tolerance by promoting stomatal closure, thereby improving crop productivity under unfavorable stress conditions. Extensive research efforts have focused on understanding ABA signaling more clearly for its potential application in agriculture.
View Article and Find Full Text PDFPlant Sci
March 2025
College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
Abscisic acid (ABA) is a sesquiterpenoid phytohormone involved in controlling plant root growth and development. Thymol, a monoterpene allelochemical, showed a potent phytotoxic effect in plants. It can rapidly inhibit seed germination and seedling growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!