The miR-21-5p/DUSP8/MAPK signaling pathway mediates inflammation and apoptosis in vascular endothelial cells induced by intermittent hypoxia and contributes to the protective effects of N-acetylcysteine.

Eur J Pharmacol

The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China. Electronic address:

Published: March 2025

Obstructive sleep apnoea hypopnea syndrome (OSAHS) is a sleep disorder associated with significant cardiovascular complications, characterized by intermittent hypoxia (IH). IH causes endothelial dysfunction, an early event in cardiovascular disease. We investigated the role of dual-specificity phosphatase 8 (DUSP8), a key negative regulator of the mitogen-activated protein kinase (MAPK) signalling pathway, in IH-induced endothelial cell damage, and the therapeutic effects of N-acetylcysteine (NAC) by establishing IH models in human umbilical vein endothelial cells and C57BL/6 mice. DUSP8 and MAPK signalling pathway-related proteins were analysed by western blotting, and DUSP8 mRNA and miR-21-5p expression was assessed by RT-qPCR. Inflammatory cytokines were detected by an enzyme-linked immunosorbent assay, apoptosis-related proteins were analysed by western blotting, and apoptosis was assessed using flow cytometry. IH stimulation induced inflammation and apoptosis in endothelial cells, downregulated DUSP8 expression, and upregulated the phosphorylation of key molecules involved in the MAPK signalling pathway. However, DUSP8 overexpression alleviated IH-induced inflammation and apoptosis in endothelial cells and reduced the phosphorylation of key molecules in the MAPK signalling pathway. Bioinformatic analysis and dual-luciferase reporter assays confirmed that DUSP8 is a direct target of miR-21-5p. DUSP8 overexpression effectively reversed the damage caused by miR-21-5p upregulation under IH conditions. Furthermore, in cell and animal models of IH, NAC demonstrated protective effects against inflammation, apoptosis, and oxidative stress through a mechanism linked to the miR-21-5p/DUSP8/MAPK signalling pathway. Overall, this study elucidated the protective role of DUSP8 against IH-induced endothelial injury and confirmed the potential of NAC as a therapeutic agent for OSAHS-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2025.177462DOI Listing

Publication Analysis

Top Keywords

inflammation apoptosis
16
endothelial cells
16
mapk signalling
16
signalling pathway
16
intermittent hypoxia
8
protective effects
8
effects n-acetylcysteine
8
dusp8
8
ih-induced endothelial
8
proteins analysed
8

Similar Publications

Inflammatory Signatures in VEXAS Syndrome, Myelodysplasia Cutis, and Sweet Syndrome.

JAMA Dermatol

March 2025

Service de Dermatologie et Allergologie, Faculté de Médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.

Importance: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease caused by UBA1 somatic variants in hematopoietic progenitor cells, mostly involving adult men. It is associated with inflammatory-related symptoms, frequently involving the skin and hematological disorders. Recently described myelodysplasia cutis (MDS-cutis) is a cutaneous manifestation of myelodysplasia in which clonal myelodysplastic cells infiltrate the skin.

View Article and Find Full Text PDF

A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections.

View Article and Find Full Text PDF

Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis.

View Article and Find Full Text PDF

Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!