Impact of therapeutic X-ray exposure on collagen I and associated proteins.

Acta Biomater

Manchester Academic Health Science Centre, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK. Electronic address:

Published: March 2025

Biological tissues are exposed to X-rays in medical applications (such as diagnosis and radiotherapy) and in research studies (for example microcomputed X-ray tomography: microCT). Radiotherapy may deliver doses up to 50Gy to both tumour and healthy tissues, resulting in undesirable clinical side effects which can compromise quality of life. Whilst cellular responses to X-rays are relatively well-characterised, X-ray-induced structural damage to the extracellular matrix (ECM) is poorly understood. This study tests the hypotheses that ECM proteins and ECM-rich tissues (purified collagen I and rat tail tendons respectively) are structurally compromised by exposure to X-ray doses used in breast radiotherapy. Protein gel electrophoresis demonstrated that breast radiotherapy equivalent doses can induce fragmentation of the constituent α chains in solubilised purified collagen I. However, assembly into fibrils, either in vitro or in vivo, prevented X-ray-induced fragmentation but not structural changes (as characterised by LC-MS/MS and peptide location fingerprinting: PLF). In subsequent experiments exposure to higher (synchrotron) X-ray doses induced substantial fragmentation of solubilised and fibrillar (chicken tendon) collagen I. LC-MS/MS and PLF analysis of synchrotron-irradiated tendon identified structure-associated changes in collagens I, VI, XII, proteoglycans including aggrecan, decorin, and fibromodulin, and the elastic fibre component fibulin-1. Thus, exposure to radiotherapy X-rays can affect the structure of key tissue ECM components, although additional studies will be required to understand dose dependent effects. STATEMENT OF SIGNIFICANCE: Biological systems are routinely exposed to X-rays during medical treatments (radiotherapy) and in imaging studies (microCT). Whilst the impact of ionising radiation on cells is well characterised the interactions between X-rays and the extracellular matrix are not. Here, we show that relatively low dose breast radiotherapy X-rays are sufficient to affect the structure of collagen I in both its solubilised and fibrillar forms. Although the impact of intermediate X-ray doses on extracellular proteins was not determined, the high dose exposures which are achievable using a synchrotron source had an even greater effect on the structure of collagen I molecules and, in tendon, on the structures of many accessory extracellular matrix proteins, The unwanted side effects of radiotherapy may therefore be due to not only cellular damage but also damage to the surrounding matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2025.03.004DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
12
x-ray doses
12
breast radiotherapy
12
exposed x-rays
8
x-rays medical
8
radiotherapy
8
side effects
8
purified collagen
8
solubilised fibrillar
8
radiotherapy x-rays
8

Similar Publications

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by its heterogeneity in cellular components, including reactive astrocytes and microglia. Since neuroimmune responses like astrogliosis and microgliosis gain recognition as vital factors in brain tumor progression, there is a growing need for clinically relevant models that assess the interactions between astrocytes, microglia, and GBM. Here, a NEuroimmune-Oncology Microphysiological Analysis Platform (NEO-MAP) is presented as a "new map" to observe astrocytic scar formation and microgliosis in response to GBM.

View Article and Find Full Text PDF

Enhanced Tumor Ablation and Immune Activation Via Irreversible Electroporation and Functionalized Vermiculite Nanosheets.

Small

March 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.

View Article and Find Full Text PDF

Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins.

Cells

February 2025

Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland.

Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!