This study investigated the development and characterization of decellularized extracellular matrix (dECM) hydrogels tailored for the biofabrication of female reproductive tissues, specifically targeting ovarian cortex, endometrium, ovarian medulla, and oviduct tissues. We aimed to evaluate the cytocompatibility, biomechanical properties, and overall efficacy of these dECMs in promoting cell viability, proliferation, and morphology using the bovine model. Bovine species provide a valuable model due to their accessibility from slaughterhouse tissues, offering a practical alternative to human samples, which are often limited in availability. Additionally, bovine tissue closely mirrors certain physiological and biological characteristics of humans, making it a relevant model for translational research. Our findings revealed that these dECMs exhibited high biocompatibility with embryo development and cell viability, supporting micro vascularization and cellular morphology without the need for external growth factors. It is important to note that the addition of alginate was crucial for maintaining the structural integrity of the hydrogel during long-term cultures. These hydrogels displayed biomechanical properties that closely mimicked native tissues, which was vital for maintaining their functional integrity and supporting cellular activities. The printability assessments showed that dECMs, particularly those from cortex tissues, achieved high precision in replicating the intended structures, though challenges such as low porosity remained. The bioprinted constructs demonstrated robust cell growth, with over 97% viability observed by day 7, indicating their suitability for cell culture. This work represented a significant advancement in reproductive tissue biofabrication, demonstrating the potential of dECM-based hydrogels in creating structurally and viable tissue constructs. By tailoring each dECM to match the unique biomechanical properties of different tissues, we paved the way for more effective and reliable applications in reproductive medicine and tissue engineering. STATEMENT OF SIGNIFICANCE: This research explores the use of decellularized extracellular matrix (dECM) hydrogels as bio-inks for creating reproductive tissues. Ovarian cortex and medulla, oviduct and endometrium dECMs demonstrated biomechanical properties that mimicked native tissues, which is essential for maintaining functional integrity and supporting cellular processes. Notably, these hydrogels exhibited high biocompatibility with embryo development and cell viability, promoting microvascularization and cell differentiation without the need for supplemental growth factors. The successful bioprinting of these bio-inks underscores their potential for creating more complex models. This work represents a significant advancement in tissue engineering, offering promising new avenues for reproductive medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2025.03.009 | DOI Listing |
J Adv Res
March 2025
Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China. Electronic address:
Introduction: Bone fracture is increasing in patients with type 2 diabetes mellitus (T2DM) due to skeletal fragility. Most antidiabetics are expected to reduce the incidence of fracture in patients with T2DM, however the results are disappointing. Metformin and GLP-1 receptor agonists have a neutral or minor positive effect in reducing fractures.
View Article and Find Full Text PDFWearable Technol
February 2025
Neuromuscular Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.
Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly. Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from slow type I to fast type IIx in humans.
View Article and Find Full Text PDFJ Med Life
January 2025
Doctoral School of Materials Science and Engineering, Politehnica University of Bucharest, Bucharest, Romania.
This study compared the biomechanical behavior of three widely used dental materials-zirconia, lithium disilicate (IPS e.max CAD), and 3D-printed composite (VarseoSmile CrownPlus)- for maxillary anterior bridge restorations. Finite element analysis (FEA) was employed to evaluate the mechanical response of these materials under normal occlusal forces, replicating real clinical conditions.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2025
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Clinical Research Center of Oral Diseases, Guangzhou, China.
Purpose: This study aims to investigate the stress distribution in bone tissue, implant, abutment, screw, and bridge restoration when the mesial implant is placed axially and the distal implant is inserted at varying angles in the posterior maxillary region with free-end partial dentition defects, using three-dimensional finite element analysis.
Materials And Methods: Cone-beam computed-tomography were utilized to create 3D reconstruction models of the maxilla. Stereolithography data of dental implants and accessories were used to design a three-unit full zirconia bridge for the maxillary model.
J Knee Surg
March 2025
Missouri Orthopaedic Institute, University of Missouri, Columbia, United States.
The knee is meniscus-dependent, relying on the tissue's biomechanical properties to maintain joint health and function. Meniscus dysfunction has primarily been assessed by measuring tibiofemoral articular contact areas and pressures, which entail important limitations. Meniscus extrusion, excursion, and hoop strain are dynamic measures of meniscal function, which have potential advantages for clinically applicable biomechanical testing of meniscus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!