Characterization of a novel virulent mycobacteriophage Kashi-SSH1 (KSSH1) depicting genus-specific broad-spectrum anti-mycobacterial activity.

Life Sci

Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India. Electronic address:

Published: March 2025

Aim: Tuberculosis (TB) is one of the leading infectious disease causing mortality in the world and the rise of drug resistance; multi-drug resistance (MDR) and extensive-drug resistance (XDR) has added to extra complicacy of the disease. In this scenario, phage therapy has emerged as a potential treatment option against drug-sensitive/-resistant strains.

Materials And Methods: The mycobacteriophage Kashi-SSH1 (KSSH1) was isolated from soil sample and was genomically, phenotypically, and functionally characterized. It includes genome assembly/annotation, transmission electron microscopy, multiplicity of infection (MOI), one-step growth curve, temperature/pH stability, confocal microscopy, host range determination and host growth reduction assays.

Key Findings: KSSH1 is a novel polyvalent virulent mycobacteriophage from the Myoviridae family, classified under cluster C1 with a 155,659 bp genome carrying key lysis genes-Holliday junction resolvase, Holin, Lysin A, and Lysin B, has an optimal MOI of 0.01, a 60-min latent period, and a burst size of 200 phages/bacterial cell. It remains stable up to 55 °C and within pH 7-10, exhibiting broad-spectrum activity against Mycobacterium species, like M. fortuitum (opportunistic pathogen), M. tuberculosis H37Ra (attenuated pathogen), and M. smegmatis, but not non-mycobacterial hosts. KSSH1 exhibits comparable growth inhibition of M. smegmatis like the antibiotics isoniazid and rifampicin as compared to the control, in liquid cultures for over 50 h without regrowth.

Significance: KSSH1 exhibits strong lytic activity against various Mycobacterium species, lacks lysogeny-associated genes like integrases/transcriptional repressors, antibiotic resistance and virulence genes and remains stable from 4 °C to 37 °C and pH 8-10 ensuring safety/stability making it an ideal candidate for therapeutic use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2025.123546DOI Listing

Publication Analysis

Top Keywords

virulent mycobacteriophage
8
mycobacteriophage kashi-ssh1
8
kashi-ssh1 kssh1
8
remains stable
8
activity mycobacterium
8
mycobacterium species
8
kssh1 exhibits
8
kssh1
5
characterization novel
4
novel virulent
4

Similar Publications

Characterization of a novel virulent mycobacteriophage Kashi-SSH1 (KSSH1) depicting genus-specific broad-spectrum anti-mycobacterial activity.

Life Sci

March 2025

Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India. Electronic address:

Aim: Tuberculosis (TB) is one of the leading infectious disease causing mortality in the world and the rise of drug resistance; multi-drug resistance (MDR) and extensive-drug resistance (XDR) has added to extra complicacy of the disease. In this scenario, phage therapy has emerged as a potential treatment option against drug-sensitive/-resistant strains.

Materials And Methods: The mycobacteriophage Kashi-SSH1 (KSSH1) was isolated from soil sample and was genomically, phenotypically, and functionally characterized.

View Article and Find Full Text PDF

The global tuberculosis (TB) epidemic affected 10 million people and caused 1.3 million deaths in 2022 alone. Multidrug-resistant TB is successfully treated in less than 60% of cases by long, expensive and aggressive treatments.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global health concern, with drug-resistant strains posing a significant challenge to effective treatment. Bacteriophage (phage) therapy has emerged as a potential alternative to combat antibiotic resistance. In this study, we investigated the efficacy of widely used mycobacteriophages (D29, TM4, DS6A) against Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

Rv2617c is involved in stress response and phage infection resistance.

Heliyon

March 2024

Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.

( is the pathogen of human tuberculosis (TB). Resistance to numerous stresses, including oxidative stress, is determinant for intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. Rv2617c has been associated with oxidative stress response when interacting with other proteins in ; however, its functional promiscuity and underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

We have studied the antimycobacterial efficacy of the liposomal preparation of mycobacteriophage D29 on models of tuberculous granuloma in vitro and in the experiment on laboratory mice of the relatively resistant strain C57BL/6, infected with the virulent strain of H37Rv. We have shown the preparation of liposomal preparation of the lytic mycobacteriophages and its characteristics. The experiments showed a significant lytic effect of the liposomal form of mycobacteriophage D29 both on the model of tuberculous granuloma formed by human blood mononuclear cells in vitro, which is formed in the presence of and on the model of tuberculous infection in C57BL/6 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!