Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Decoding latent preferences for novel products is crucial for understanding decision-making processes, especially when subjective evaluations are unclear. Brain activity in regions like the medial orbitofrontal cortex and nucleus accumbens (NAcc) correlates with subjective preferences. However, whether these regions represent preferences toward novel products and whether coding persists after familiarity remain unclear. We examined the brain coding of latent preferences for novel scented products and how they evolve with familiarity. We measured functional magnetic resonance imaging (fMRI) signals evoked by three fabric softener odors, both when novel and when familiar, in 25 previously unexposed females. To obtain reliable preferences, participants chose one softener after using all three twice at home after the first fMRI measurement (Day 1) and continued using it at home for four months until the second day of the fMRI measurement (Day 2). Subjective ratings were also obtained after each fMRI run. On Day 1, no significant differences in subjective ratings between selected and non-selected odors were found. However, the decoding analysis revealed that future odor preferences for novel products were coded in several regions, including the left superior frontal lobe (SF), right NAcc, and left piriform cortex. On Day 2, the left SF continued to encode preferences after familiarity. These results suggest that odor preferences for novel products are coded in the brain even without conscious awareness, and that the coding in the SF is robust against familiarity. These findings provide insights into a more comprehensive understanding of the brain coding of latent preferences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2025.121131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!