Limited proteolysis combined with mass spectrometry (LiP-MS) facilitates probing structural changes on a proteome-wide scale. This method leverages differences in the proteinase K accessibility of native protein structures to concurrently assess structural alterations for thousands of proteins in situ. Distinguishing different contributions to the LiP-MS signal, such as changes in protein abundance or chemical modifications, from structural protein alterations remains challenging. Here, we present the first comprehensive computational pipeline to infer structural alterations for LiP-MS data using a two-step approach. (1) We remove unwanted variations from the LiP signal that are not caused by protein structural effects and (2) infer the effects of variables of interest on the remaining signal. Using LiP-MS data from three species we demonstrate that this approach outperforms previously employed approaches. Our framework provides a uniquely powerful approach for deconvolving LiP-MS signals and separating protein structural changes from changes in protein abundance, post-translational modifications and alternative splicing. Our approach may also be applied to analyze other types of peptide-centric structural proteomics data, such as FPOP or molecular painting data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcpro.2025.100934 | DOI Listing |
Am J Public Health
April 2025
All authors are with the Office of the Chief Medical Examiner, San Francisco, CA. Luke N. Rodda is also with the Department of Laboratory Medicine, University of California, San Francisco.
To identify drug prevalence through the analysis of drug material and paraphernalia (DMP) collected from scenes of fentanyl-involved fatal accidental drug overdoses in San Francisco, California, throughout 2022. We conducted gas chromatography-mass spectrometry testing on 409 items of DMP (e.g.
View Article and Find Full Text PDFJ Agric Food Chem
March 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp () and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2025
The Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates with a focus on two compounds: UCB-J and UCB2400.
View Article and Find Full Text PDFJ Proteome Res
March 2025
Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States.
Lung cancer stands as the leading cause of cancer-related death worldwide, impacting both men and women in the United States and beyond. Radiation therapy (RT) serves as a key treatment modality for various lung malignancies. Our study aims to systematically assess the prognosis and influence of RT on metabolic reprogramming in patients diagnosed with nonsmall-cell lung cancer (NSCLC) through longitudinal metabolic profiling.
View Article and Find Full Text PDFSci Transl Med
March 2025
Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!