DPHC from Alpinia officinarum Hance specifically modulates the function of CENPU in the cell cycle and apoptosis to ameliorate hepatocellular carcinoma.

J Ethnopharmacol

Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China. Electronic address:

Published: March 2025

Ethnopharmacological Relevance: Alpinia officinarum Hance (A. officinarum), a perennial herb used in the treatment of digestive system cancers, holds significant value for the Li people of Hainan as a traditional Chinese medicine. (R)-5-hydroxy-1,7-diphenyl-3-heptanone (DPHC), a diarylheptanoid component is derived from A. officinarum. Diarylheptanoids have demonstrated anti-proliferative effects on breast cancer cells, neuroblastoma cells, and other tumor cells. However, the pharmacological activity of DPHC in improving hepatocellular carcinoma (HCC) remains undefined.

Aim Of The Study: To elucidate the anti-HCC effects of DPHC derived from A. officinarum and explore its underlying mechanistic pathways both in vivo and in vitro.

Material And Methods: The effects of DPHC on HCC cell lines were evaluated in vitro using cell counting kit-8, EdU cell proliferation assays, a wound healing assay, a three-dimensional tumor spheroid model, and flow cytometry. The ability of DPHC to ameliorate HCC was assessed in vivo via a nude mouse subcutaneous xenograft tumor model, serum biochemical marker detection, and hematoxylin-eosin staining. The molecular mechanism of DPHC in HCC was elucidated through a combination of transcriptome sequencing, cell transfection, immunohistochemistry assay, immunofluorescence staining, quantitative reverse transcription-PCR, and western blot analysis.

Results: DPHC induced significant G0/G1 phase arrest and apoptosis in HepG2 and HCCLM3 cells while also markedly inhibiting tumor growth in nude mice. Mechanically, DPHC directly interacted with centromere-associated protein U (CENPU) to suppress its expression. The reduced expression of CENPU results in decreased interaction with the transcription factor E2F6, thereby affecting the transcriptional activity of the transcription factor E2F1. This subsequently inhibits the expression of downstream cell cycle factors (CCND1, CDK4, and CDK1) and increases apoptosis factors (Caspase 3 and Caspase 9).

Conclusions: DPHC from A. officinarum specifically modulates the function of CENPU in the cell cycle and apoptosis to ameliorate HCC. Our study revealed the anti-HCC effect and underlying mechanism of DPHC, offering new insights and potential targets for HCC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119598DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
dphc
11
alpinia officinarum
8
officinarum hance
8
modulates function
8
function cenpu
8
cenpu cell
8
cycle apoptosis
8
apoptosis ameliorate
8
hepatocellular carcinoma
8

Similar Publications

Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.

Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.

View Article and Find Full Text PDF

The delivery of intracellular cargoes by kinesins is modulated at scales ranging from the geometry of the microtubule networks down to interactions with individual tubulins and their code. The complexity of the tubulin code and the difficulty in directly observing motor-tubulin interactions have hindered progress in pinpointing the precise mechanisms by which kinesin's function is modulated. As one such example, past experiments show that cleaving tubulin C-terminal tails (CTTs) lowers kinesin-1's processivity and velocity on microtubules, but how these CTTs intertwine with kinesin's processive cycle remains unclear.

View Article and Find Full Text PDF

Synthesis and evaluation of demethylzeylasteral derivatives as potential anticancer therapies for colon cancer: In vitro antiproliferation, cell cycle arrest analyses, network pharmacology investigations, and molecular docking studies.

Fitoterapia

March 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

A series of novel demethylzeylasteral derivatives 1-3 was synthesized by performing modifications on the aldehyde groups at the C-4 positions. Subsequently, the anti - proliferative activities of derivatives 1-3 was evaluated using three human cancer cell line models (HCT116, SKOV3, and HepG2) and the CCK - 8 assay. Compared with demethylzeylasteral, derivative 2 exhibited a remarkable inhibitory effect on HCT116 (4.

View Article and Find Full Text PDF

Exosomal Dynamics: Bridging the Gap Between Cellular Senescence and Cancer Therapy.

Mech Ageing Dev

March 2025

Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India. Electronic address:

Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle.

View Article and Find Full Text PDF

A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!