Background: Radiation-induced thrombocytopenia (RIT) poses a serious risk to patients with cancer undergoing radiotherapy and leads to hemorrhage and mortality. Unfortunately, effective treatment options for RIT are currently limited.
Purpose: This study aimed to discover active compound from Fructus Psoraleae, a traditional Chinese medicine recognized for its hemostatic properties, and to elucidate its mechanism of action in the treatment of RIT.
Methods: The efficacy of Fructus Psoraleae in treating thrombocytopenia was assessed using network pharmacology. A drug-screening model was built using a naive Bayes algorithm to determine the effective compounds in Fructus Psoraleae. Giemsa staining and flow cytometry were used to evaluate the effects of bavachinin A on megakaryocytes (MK) differentiation. RIT and thrombopoietin (TPO) receptor (c-MPL) knockout (c-MPL) mice were used to assess the therapeutic efficacy of bavachinin A in mitigating thrombocytopenia. Tg (cd41:eGFP) zebrafish were used to investigate the effect of bavachinin A on thrombopoiesis. RNA sequencing (RNA-seq), molecular docking simulations, molecular dynamics simulations, drug affinity responsive target stability assay (DARTS), and biolayer interferometry (BLI) were used to elucidate the molecular mechanisms of action of bavachinin A against thrombocytopenia.
Results: In silico analysis using a drug screening model identified bavachinin A as promising candidate compound derived from Fructus Psoraleae. In vitro experiments demonstrated that Bavachinin A induced MK differentiation. In vivo experiments revealed that bavachinin A augmented platelet levels and improved coagulation in RIT mice, facilitated megakaryopoiesis and platelet levels in c-MPL mice, and accelerated thrombopoiesis in zebrafish. Furthermore, RNA-seq, molecular docking simulations, molecular dynamics simulations, DARTS, and BLI demonstrated that bavachinin A bound directly to fms-like tyrosine kinase 3 (FLT3). Notably, blocking FLT3 or phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway hindered bavachinin-A-induced MK differentiation. However, repressing the TPO/c-MPL signaling pathway had no significant effect.
Conclusion: Bavachinin A promotes MK differentiation and thrombopoiesis by directly binding to FLT3 and activating PI3K/Akt signaling. Importantly, this effect was not dependent on the conventional TPO/c-MPL signaling pathway. This study underscores the translational potential of bavachinin A as a promising novel therapeutic for thrombocytopenia, offering novel insights into TPO-independent mechanisms of thrombopoiesis and establishing a robust multimodal approach for drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2025.156597 | DOI Listing |
Phytomedicine
March 2025
Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:
Background: Radiation-induced thrombocytopenia (RIT) poses a serious risk to patients with cancer undergoing radiotherapy and leads to hemorrhage and mortality. Unfortunately, effective treatment options for RIT are currently limited.
Purpose: This study aimed to discover active compound from Fructus Psoraleae, a traditional Chinese medicine recognized for its hemostatic properties, and to elucidate its mechanism of action in the treatment of RIT.
Front Pharmacol
January 2025
Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China.
L. (PCL) is an annual herb of the genus Psoralea in the family Fabaceae, and its mature fruit can be used medicinally as a precious medicinal herb to tonify muscles and bones. With the deepening of research, its applications to various industries, including food, agriculture, and cosmetics, with products being developed in countries such as Vietnam, India, and Japan.
View Article and Find Full Text PDFFront Pharmacol
January 2025
The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: The Beclin-1/Bcl-2 complex plays a pivotal role in regulating both autophagy and apoptosis in osteoblasts affected by osteoporosis. This study first investigates whether the Bushen Jianpi Huoxue Formula can enhance the cellular function of osteoblasts. Additionally, it initially explores the functional mechanism of Beclin-1/Bcl-2-related apoptosis.
View Article and Find Full Text PDFOsteoporosis (OP) is a prevalent metabolic bone disease globally. Currently, the development of Traditional Chinese Medicine (TCM) resources to unblock joints, strengthen bones, and enhance muscle function to regulate anti-osteogenic and anabolic metabolism and thus reshape intraosseous homeostasis was an effective way to alleviate OP. The F-E-D formula, comprising Fructus Psoraleae, Eucommia, and Drynariae Rhizoma, has shown efficacy in treating OP.
View Article and Find Full Text PDFPhytochemistry
February 2025
Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!