Accurate quantification of microplastics (MPs) in soils is a significant challenge due to the complex nature of the organo-mineral matrix. Fine mineral particles and organic matter often interfere with the efficiency of extraction, identification and quantification of MPs from soils. Here, an optimized MP extraction and quantification method is proposed, using total organic carbon analyser-solid sample combustion unit (TOC-SSM) analysis. The approach entails a field survey, digestion of organic matter by Piranha solution, density separation, and quantification. This method achieves a high total recovery rate of 97.39 ± 14.25 (SE) % for particles sized between 300 and 600 µm, and 94.80 ± 13.48 (SE) % for particles less than 300 µm with spiked soil as samples. The optimised method is then applied to strawberry farm soils that use plastic mulch films to quantify MP contamination levels. Our results indicate MP concentrations of 12.24 ± 3.65 (SE) mg kg (for particles of 300-2000 µm in size) and 2.62 ± 0.66 (SE) mg kg (for particles smaller than 300 µm). With improved simplicity and the ability to provide the actual weight of plastics for the extraction and quantification of MPs, this work offers a potential approach for assessing low-density plastics in the northeastern Australian agricultural soils with a dominant MP contamination, specifically polyethylene (PE).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137841 | DOI Listing |
Water Environ Res
March 2025
Environmental Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Uncertainties in the quantification of microplastics in various products arise from the applied pretreatment processes. Road dust, a significant source of microplastics, requires precise quantification methods to ensure accuracy. In this study, we examined the impact of pretreatment processes on the accuracy of microplastic quantification in road dust, specifically focusing on tire rubber particles.
View Article and Find Full Text PDFAnal Bioanal Chem
March 2025
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy.
View Article and Find Full Text PDFJ Hazard Mater
March 2025
School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia. Electronic address:
Accurate quantification of microplastics (MPs) in soils is a significant challenge due to the complex nature of the organo-mineral matrix. Fine mineral particles and organic matter often interfere with the efficiency of extraction, identification and quantification of MPs from soils. Here, an optimized MP extraction and quantification method is proposed, using total organic carbon analyser-solid sample combustion unit (TOC-SSM) analysis.
View Article and Find Full Text PDFChemosphere
March 2025
Eskişehir Technical University, Department of Environmental Engineering, 26555, Eskişehir, Türkiye; Eskişehir Technical University, Environmental Research Center (ÇEVMER), 26555, Eskişehir, Türkiye. Electronic address:
One of the main difficulties in microplastic (MP) research is the lack of standardized, real-world methods such as matrix blank and simultaneous tracking of polymer particles for enumeration. Building on a previous study, a matrix preparation and experimental workflow for soil matrices is presented that addresses the challenges of purification to allow subsequent analysis using Nile Red-stained MPs as a surrogate. Key steps include peroxide digestion and density separation (NaI) followed by centrifugation for low density polyethylene (LDPE) and polyvinyl chloride (PVC) surrogates to assess recoveries in terms of number and size, based on fluorescence microscopy and Raman spectroscopy.
View Article and Find Full Text PDFMar Pollut Bull
March 2025
Centre of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, Spain; Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV),Catalonia, Reus, 43204, Spain.
The aim of this study is the characterization of microplastics (60 μm -5 mm) on Catalan beaches. It takes into consideration factors as sand size distribution, geomorphology, meteorological parameters and anthropogenic pressures. MPs were measured in seventy (n = 70) intertidal sand samples covering 580 km coastline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!