Small nano-plastics (NPs, < 30 nm) with a high accumulation in biological organisms in coastal areas might react with widely presented bacteria and phosphate, which remains unclear. Therefore, the mechanisms governing the transport of two-sized NPs with Escherichia coli (E. coli) and phosphate were investigated in hyper-saline water-saturated sand porous media. The results showed that 20 nm NPs exhibited more hetero-aggregation with E. coli than 80 nm NPs, associated with lower k/k values (0.268 vs. 0.412) and more substantially suppressed depth of φ (17.83 KT vs. 23.44 KT), based on two-site kinetic attachment retention model fitting and extended-Derjaguin-Landau-Verwey-Overbeek theory. Accordingly, even though the mass recovery percentage of both sized NPs alone was similar, the irreversible deposition of 20 nm NPs doubled by E. coli, increasing the coastal environmental risks. In contrast, 80 nm NPs reversibly attached to the sands with less effect by E. coli, causing secondary pollution. The copresence of phosphate pronouncedly enhanced the transportability of two-sized NPs with E. coli, especially increasing 20 nm NP mobility from 17.7 % to 39.2 % in 200 mM NaCl by preferentially adsorbing onto E. coli to avoid agglomeration with NPs. This study highlights the potential risk of small NPs in complicated coastal ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137805DOI Listing

Publication Analysis

Top Keywords

nps
10
escherichia coli
8
coli phosphate
8
two-sized nps
8
20 nm nps
8
80 nm nps
8
coli increasing
8
coli
7
phosphate
4
phosphate mediated
4

Similar Publications

Molecular Engineering of a SICTERS Small Molecule with Superior Raman Imaging and Photothermal Performance.

J Am Chem Soc

March 2025

Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.

View Article and Find Full Text PDF

Nanoparticle-Based Pulmonary Immune Engineering.

Annu Rev Chem Biomol Eng

March 2025

1Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; email:

Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense.

View Article and Find Full Text PDF

Erbium oxide nanoparticles (ErO-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of ErO-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of ErO-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs.

View Article and Find Full Text PDF

To achieve an intimate contact between neuronal cells and the electrode in non-invasive platforms intended for neurological research, in this study, we fabricated a raised-type Au multi-electrode array (MEA) by employing nanoscale-thick indium-tin oxide (ITO; 50 nm) as a track layer and plasma-enhanced atomic layer-deposited (PEALD) AlO (30-60 nm) and HfO (20 nm) as passivation layers. The PEALD AlO-passivated Au MEA was subsequently modified with electrodeposited AuPt nanoparticles (NPs) and IrO to demonstrate the passivation capability and chemical resistance of AlO to Au-, Pt-, and IrO NP-containing electrolytes. AlO-passivated and IrO/AuPt-modified MEAs could resolve optogenetically activated spikes and spontaneous activities with a root-mean-square noise level of 2.

View Article and Find Full Text PDF

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!