Women should be aware of prenancy related health issues. A user-friendly model is developed in which the patients can use as well as clinicians to determine the risks associated with foetal development inside the womb, birth weight, whose effects are typically linked to the mother through biological relationships. Recent advances in computer vision and artificial intelligence offer new techniques for automated evaluation of medical images across a variety of fields, including ultrasound (US) images. Enhancing the detection of the estimated foetal weight (EFW) and mother-foetal disease computations can aid obstetricians in making decisions and reduce perinatal issues. This study aims to build a birth weight classification and prediction of relevant parameters during delivery. In this data analysis suite, exploratory data analysis is performed as part of the data pre-processing to investigate the fundamental information and transformational properties. For feature extracting model, the Advanced Dynamic based Feature Selection (ADFS) algorithm has been used which is optimized using the enriched elephant herding optimization algorithm (EEHOA). The multiple feature estimation is classified using augmented recurrent neural network classifier (AURNN). The findings of analyses with graphical representations have been interpreted through the application of visual analytical techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2025.03.003 | DOI Listing |
Mol Inform
March 2025
Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam.
Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
There is great interest in using genetically tractable organisms such as to gain insights into the regulation and function of sleep. However, sleep phenotyping in has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Padova Neuroscience Center, University of Padova, Padova 35131, Italy.
Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Astronomy, Center for Space Physics, Boston University, Boston, MA 02215.
Nonlinear plasma physics problems are usually simulated through comprehensive modeling of phase space. The extreme computational cost of such simulations has motivated the development of multi-moment fluid models. However, a major challenge has been finding a suitable fluid closure for these fluid models.
View Article and Find Full Text PDFBiomacromolecules
March 2025
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States.
We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!