Effect of androgen receptor blockade on spatial memory in young and aged male rats in the Barnes maze.

Horm Behav

Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, 14370 Ciudad de México, Mexico.

Published: March 2025

Spatial memory declines with age, and this decline is associated with decreased testosterone levels. However, the specific role of the androgen receptor in spatial memory performance in both young and aged rats remains largely unexplored. Our study aimed to investigate the effects of chronic androgen receptor blockade on spatial memory performance in young and aged male rats. Young (3 months old) and aged (21 months old) Wistar rats were assigned to one of three experimental groups: control, vehicle-, or flutamide-treated (10 mg/kg SC for 14 days). Spatial memory was evaluated using the Barnes maze (Days 8-14 of flutamide administration). The phases of spatial memory acquisition (4 daily trials/4 days) and retention (1 trial/day, 3 days after acquisition) were evaluated. The results indicated that older animals took longer to find the goal, traveled greater distances, and moved more slowly than their younger counterparts in the Barnes maze, regardless of treatment. During the acquisition phase, flutamide administration delayed learning in both young and aged animals. Specifically, flutamide-treated animals exhibited delayed learning during the assessment of overnight forgetting (trial 1 on each day of the acquisition phase). During the retention phase, an age-related effect was observed in the flutamide-treated groups. These findings suggest that androgen receptor blockade induces cognitive deficits in both young and aged male rats, supporting the modulatory role of endogenous androgens in memory function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2025.105711DOI Listing

Publication Analysis

Top Keywords

spatial memory
24
young aged
20
androgen receptor
16
receptor blockade
12
aged male
12
male rats
12
barnes maze
12
blockade spatial
8
memory performance
8
performance young
8

Similar Publications

Alzheimer's disease (AD) is a neurodegeneration driven by beta-amyloid (Aβ) deposits in the brain involving autophagy dysfunction. Ginsenoside Rg1, a pharmacologically active compound found in ginseng, has possible therapeutic effects for AD. This study discovered that FGR proto-oncogene (FGR) was a therapeutic target of Rg1 in AD and it was possibly involved in autophagy.

View Article and Find Full Text PDF

Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.

View Article and Find Full Text PDF

Working with scatterplots is a classic everyday task for data analysts, which gets increasingly complex the more plots are required to form an understanding of the underlying data. To help analysts retrieve relevant plots more quickly when they are needed, immersive virtual environments (iVEs) provide them with the option to freely arrange scatterplots in the 3D space around them. In this paper, we investigate the impact of different virtual environments on the users' ability to quickly find and retrieve individual scatterplots from a larger collection.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a widespread condition that affects adults and the community considerably. The causes are yet unknown, except from advanced age and genetic predisposition. Natural products provided advantageous advantages for managing AD due to their efficacy, safety, and accessibility.

View Article and Find Full Text PDF

Resistive switching (RS) memory devices with incorporated capabilities of data sensing, storing and processing are promising for artificial intelligence applications. In this respect, controlling resistance not only by electrical but also optical stimulations provides attractive opportunities for the development of novel neuromorphic sensing and computing systems. Here, we demonstrate the RS of Cu/parylene-PbTe/ITO memristive devices and the dependence of RS on optical excitation for efficient neuromorphic computing with high classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!