This study explores the production of poly alpha olefin (PAO) from biomass as an environmentally friendly alternative to fossil fuel-based methods, aiming to reduce greenhouse gas (GHG) emissions. The primary goal is to design a process for converting 2,000 metric tons of biomass into PAO daily, integrating biological and chemical pathways. Environmental impact is assessed through a life cycle assessment (LCA), comparing this biomass-based method with traditional fossil fuel-derived processes. Key findings include the successful production of 458 metric tons of PAO, with the LCA revealing a 34.8% reduction in GHG emissions (9.88 kg CO-eq./kg of PAO) compared to fossil fuel-based PAO. Sensitivity analyses on the oligomerization yield (60-70%, base case at 65%) and the recycle ratio of glucose in the bioprocess for octanoic acid production show significant environmental benefits when exceeding a 55% recycle ratio. Additionally, an energy scenario analysis predicts the impact of shifting to renewable energy by 2030. In a scenario where all electric utilities are renewable (RE100 scenario), GHG emissions are estimated at 13.07 kg CO-eq./kg of PAO, further emphasizing the environmental advantage of biomass-based PAO. This study, through its integration of biological and chemical processes and comprehensive LCA, provides critical insights into the potential of biomass-based materials for reducing GHG emissions, making a substantial contribution to future research in high-value material production from renewable resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124877DOI Listing

Publication Analysis

Top Keywords

ghg emissions
16
life cycle
8
cycle assessment
8
fossil fuel-based
8
metric tons
8
biological chemical
8
co-eq/kg pao
8
recycle ratio
8
pao
7
production
5

Similar Publications

Robust Assessments of Lithium Mining Impacts Embodied in Global Supply Chain Require Spatially Explicit Analyses.

Environ Sci Technol

March 2025

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

Lithium is a critical material for the energy transition, but its mining causes significant environmental impacts that will intensify due to surging global demand. Here, we conduct a mining site-specific environmental impact assessment of lithium on a global scale, focusing on greenhouse gas (GHG) emissions, water use, and land use. We then track the production and international trade flows of all lithium-containing commodities to assess how lithium mining impacts are distributed across global supply chains.

View Article and Find Full Text PDF

There is substantial interest in restoring tidal wetlands because of their high rates of long-term soil carbon sequestration and other valued ecosystem services. However, these wetlands are sometimes net sources of greenhouse gases (GHG) that may offset their climate cooling potential. GHG fluxes vary widely within and across tidal wetlands, so it is essential to better understand how key environmental drivers, and importantly, land management, affect GHG dynamics.

View Article and Find Full Text PDF

Rapid economic development and population growth have driven significant greenhouse gas (GHG) emissions from China's crop farming. Understanding specific features of these emissions is crucial for developing effective mitigation strategies. While existing studies primarily focused on accounting for GHG emissions at the entire crop farming system level, a critical gap exists in systematic measurements at individual crop level.

View Article and Find Full Text PDF

In this paper, a set of mathematical tools are developed and assembled to quantify, predict and virtually assess NO emission mitigation strategies in partial nitritation (PN) / anammox (ANX) granular based reactors. The proposed approach is constructed upon a set of data pre-treatment methods, process simulation models, control tools (and algorithms) and key performance indicators to analyze, reproduce, and forecast the behavior of multiple operational variables within aerobic granular sludge systems. All these elements are tested on two full-scale data sets (#D1, #D2) collected over a period of four months (Sept-Dec 2023).

View Article and Find Full Text PDF

Agri-food waste (AFW) represents a significant fraction of the material generated by the agri-food industry, which itself accounts for almost one-third of the annual global anthropogenic greenhouse gas (GHG) emissions. Considering the growing global population and the consequent rise in food demand, the management and valorization of this waste are essential to ensure the sustainability of the entire food chain for future generations. Recycling agri-food waste offers a promising strategy to mitigate the sector's environmental impact, particularly when the waste consists of food-grade materials that enhance its intrinsic value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!