Francois Jacob proposed that evolutionary novelty arises through incremental tinkering with pre-existing genetic mechanisms. Vertebrate evolution was predicated on pluripotency, the ability of embryonic cells to form somatic germ layers and primordial germ cells (PGCs). The origins of pluripotency remain unclear, as key regulators, such as Nanog, are not conserved outside of vertebrates. Given NANOG's role in mammalian development, we hypothesized that NANOG activity might exist in ancestral invertebrate genes. Here, we find that Vent from the hemichordate Saccoglossus kowalevskii exhibits NANOG activity, programming pluripotency in Nanog mouse pre-induced pluripotent stem cells (iPSCs) and NANOG-depleted axolotl embryos. Vent from the cnidarian Nematostella vectensis showed partial activity, whereas Vent from sponges and vertebrates had no activity. VENTX knockdown in axolotls revealed a role in germline-competent mesoderm, which Saccoglossus Vent could rescue but Nematostella Vent could not. This suggests that the last deuterostome ancestor had a Vent gene capable of programming pluripotency and germline competence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.115396DOI Listing

Publication Analysis

Top Keywords

programming pluripotency
12
nanog activity
8
vent
6
nanog
5
pluripotency germ
4
germ co-evolved
4
co-evolved nanog
4
nanog ancestor
4
ancestor francois
4
francois jacob
4

Similar Publications

Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Stem cells possess inherent properties of self-renewal and differentiation, and thus hold significant promise for regenerating damaged tissues or replacing lost cells. Unless their therapeutic effects are solely mediated by paracrine, transplanted stem cells need to be highly plastic to adapt to the host tissue environment and differentiate into constituent tissue-specific cells for tissue repair. Stem cells used in current cell-based therapies either have limited differentiation potential or are pluripotent but must be strictly restricted to avoid tumorigenicity risk in vivo.

View Article and Find Full Text PDF

Extracellular Vesicles Derived From Regenerating Tissue Promote Stem Cell Proliferation in the Planarian .

J Extracell Biol

March 2025

Genes and Human Disease Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA.

Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole-body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury.

View Article and Find Full Text PDF

Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains.

View Article and Find Full Text PDF

The acute and large area skin healing has been an intractable problem for both clinician and patient. Exosomes derived from human-induced pluripotent stem cells (hiPSC-Exos) have been a novel promising cell-free treatment on skin damage repair. In this study, in vivo skin trauma model of full-layer skin damage on mouse back and in vitro skin-like trauma model of human keratinocytes (HaCaT) scratches were established to investigate the effects of hiPSC-Exos on the acute wound healing, and its potential regulation mechanism would be tried to explore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!