Introduction: Chronic hepatitis B (CHB) remains a major global health challenge, with functional cure achieved in only a small subset of patients. Current oral antiviral agents effectively suppress viral replication but fail to eliminate the hepatitis B virus (HBV). Recent advances in immunomodulatory therapies offer new hope for improving functional cure rates.
Areas Covered: This special report discusses the latest therapeutic strategies targeting immune responses in CHB. We list the mechanisms of immune evasion in HBV infection and highlight emerging immunomodulatory agents. Key findings from recent clinical trials and critical considerations are summarized to provide an overview of ongoing efforts and future direction to achieve functional cure.
Expert Opinion: While combination therapies hold promise, their real-world feasibility depends on patient selection, combination regimens, costs, and global accessibility. A successful HBV cure strategy must integrate scientific innovation with public health policies to ensure equitable access to effective treatments. Future research should identify key immune mechanisms, optimize combination regimens, and improve global treatment infrastructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17474124.2025.2477256 | DOI Listing |
J Immunol
February 2025
Gritstone Bio, Inc, Emeryville, CA, United States.
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines.
View Article and Find Full Text PDFAdv Mater
March 2025
Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 1UL, UK.
Base editing, a CRISPR-based genome editing technology, enables precise correction of single-nucleotide variants, promising resolutive treatment for monogenic genetic disorders like recessive dystrophic epidermolysis bullosa (RDEB). However, the application of base editors in cell manufacturing is hindered by inconsistent efficiency and high costs, contributed by suboptimal delivery methods. Nanoneedles have emerged as an effective delivery approach, enabling highly efficient, non-perturbing gene therapies both in vitro and in vivo.
View Article and Find Full Text PDFCells
February 2025
Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries.
View Article and Find Full Text PDFBioelectromagnetics
April 2025
Care & Cure Lab of the Electromagnetics Group (EM4Care+Cure), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Neuromodulation with low-intensity focused ultrasound (LIFUS) holds significant promise for noninvasive treatment of neurological disorders, but its success relies heavily on accurately targeting specific brain regions. Computational model predictions can be used to optimize LIFUS, but uncertain acoustic tissue properties can affect prediction accuracy. The Monte Carlo method is often used to quantify the impact of uncertainties, but many iterations are generally needed for accurate estimates.
View Article and Find Full Text PDFFront Immunol
March 2025
Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Elite controllers (ECs) and post-treatment controllers (PTCs) represent important models for achieving a functional cure for HIV. This review synthesizes findings from immunological, genetic, and virological studies to compare the mechanisms underlying HIV suppression in ECs and PTCs. Although ECs maintain viral control without antiretroviral therapy (ART), PTCs achieve suppression following ART discontinuation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!