A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phylogenetic analysis of Asiatic species in the tropical genus Beilschmiedia (Lauraceae). | LitMetric

Phylogenetic analysis of Asiatic species in the tropical genus Beilschmiedia (Lauraceae).

BMC Genomics

Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China.

Published: March 2025

The tropial genus Beilschmiedia, comprising over 250 species worldwide, includes approximately 40 species distributed in the northern tropical forests of Asia. However, the phylogenetic relationships among these Asiatic Beilschmiedia species remain incompletely understood. In this study, we sequenced and assembled complete chloroplast genomes from six Asiatic Beilschmiedia species, including five from China and one from Indonesia. The genomes range in size from 158,275 to 158,620 bp and exhibit a typical quadripartite structure, similar to other basal Lauraceae species. We identified 116 to 122 simple sequence repeats (SSRs) and 19 to 28 dispersed repeats within the genomes. The relative synonymous codon usage (RSCU) of 79 protein-coding genes exhibited minimal variation. Notably, the boundary genes rpl23 and ycf1 displayed varying degrees of expansion and contraction, along with incomplete replication phenomena. Using a sliding window approach, we constructed a coalescent tree with ASTRAL software to analyze the phylogenetic relationships. The resulting main topology was highly consistent with the Maximum Likelihood (ML) and Bayesian inference (BI) analyses, clearly dividing the Asiatic core Beilschmiedia into two distinct groups: Group A and Group B. Group A showed an extremely low nucleotide diversity (π) value of 0.00063, while Group B exhibited 2.79-fold higher diversity. The highly variable regions trnS-trnG and rpl32-trnL are proposed as molecular markers for distinguishing between Groups A and B. Furthermore, we identified seven additional highly variable regions: ndhF, ndhF-rpl32, rpl2, rpl2-trnH, rpl32, rps15-ycf1, and ycf1. These regions may serve as potential molecular markers for the Asiatic Beilschmiedia species. These findings provide new insights into the phylogenetic relationships among Asiatic Beilschmiedia species, highlighting the potential of specific molecular markers in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889841PMC
http://dx.doi.org/10.1186/s12864-025-11354-xDOI Listing

Publication Analysis

Top Keywords

asiatic beilschmiedia
16
beilschmiedia species
16
phylogenetic relationships
12
molecular markers
12
species
8
genus beilschmiedia
8
relationships asiatic
8
group group
8
highly variable
8
variable regions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!